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1.0 Summary

This report describes the component development tasks

carried out by Standard Oil* under the Advanced Gas Turbine (AGT)
project which was funded by the Department of Energy (DOE) and

administered by the National Aeronautics and Space Administration
(NASA) Lewis Research Center. Standard Oil, as a subcontractor to the

Garrett Auxiliary Power Division (GAPD)** of the Garrett Corporation,
conducted development work on ceramic components for the AGT 101

Unique program from October 1979 through June 1987. Additionally

materials and testing methods were evaluated from October 1979 through
March 1981 in the AGT Common Work jointly sponsored by GAPD and the
Allison Gas Turbine Division of General Motors***.

Standard Oil's accomplishments within the AGT 101 program
can be summarized in five key areas:

Establishment of a design/fabrication interface

Iterative component development
Near net shape fabrication of large and/or complex
shapes

Availability of hardware for engine testing

Material and fabrication development on silicon carbide
based materials was conducted on the non-bladed rotor during the first

two years of the contract. Injection molding, thixotropic casting and

hot pressing of a molded shell with a suitable core material were
explored. Component integrity and material strength demonstrated in
these efforts showed limited success.

Designs for hot flow path components developed early in the
program were revised periodically to improve the performance
requirements or facilitate fabrication. Continuity of design/

fabrication improvements was maintained through frequent interactive

meetings between Standard Oil and GAPD personnel. The development of
near net shape forming processes for several of the hot flow path
components was in some cases aided by parallel processing routes to
assure adequate supply of good quality, dimensionally satisfactory

components.

Work carried out under the AGT 101 focussed on fabrication

development of sintered alpha silicon carbide (Hexoloy TM SA)

components. Hexoloy TM ST, a titanium diboride particulate reinforced
sintered alpha silicon carbide was introduced for the turbine

backshroud late during the last contract year.

formerly * Carborundum

** AiResearch and Garrett Engine Turbine Company
***Detroit Diesel Allison



Conventional isopressing/green machining combined with final
grinding was chosen for components of relatively simple geometry such
as duct spacer, turbine backshroud, regenerator shield, combustor
liner and wave springs. An extrusion approach was also investigated
to fabricate the regenerator shield and combustor liner but
discontinued in favor of the conventional approach.

Fabrication development using the injection molding process

was conducted on the turbine shroud and on stator segments as these

components have variable wall thickness and a high degree of

complexity. Several design iterations were carried out on the turbine
shroud which was the largest part fabricated in Hexoloy TM SA. Mold
modifications and sintering/fixturing experiments were implemented in

an effort to improve dimensional tolerances and reduce warpage.

Testing in the 1984/1985 contract years indicated that both components

could only marginally withstand the tensile stresses in operation.

The combustor baffle was fabricated first by slip casting

and then by injection molding. Design modifications indicated
increased need for green machining of the internal slip cast profile,

and consequently, injection molding with its near net shape capability
was introduced. Machined components made by both forming techniques

were supplied and tested.

Development work was carried out for the transition duct

using slip casting, isopressing/green machining, and injection
molding. The change in fabrication methods was predominantly governed

by design iterations incorporating features such as locating tabs,

platforms and thermocouple port holes. All components subjected to
rig and engine tests were fabricated by isopressing/green machining
and dense grinding. Injection molding development was conducted

during the latter part of the contract in a parallel effort.

Ceramic components tested in all-ceramic engine tests to
2200°F have accumulated about 100 hours. Additionally, transition
ducts and combustor baffles were successfully screened in 2500VF rig

tests. Several stationary components such as the combustor baffle,

regenerator shield, and combustor liner have performed reliably.
Testing and resultant failures of other components have lead directly
to design modifications or directed attention to material and

fabrication improvements.



2.0 Introduction

D_Gi_qAI. PAGE IS

_OOR QUALITY

The Advanced Gas Turbine (AGT) Program was initiated in late

1979 due to growing national concerns regarding energy conservation
and critical materials availability, and based on the accomplishments

of the earlier Ceramic Applications to Turbine Engines (CATE) Program.

The project, funded by the U.S. Department of Energy (DOE) and
administered by the National Aeronautics and Space Administration

(NASA) - Lewis Research Center, focusses on three major areas:

Develop technology for a multi-fuel energy efficient

turbine engine for passenger cars.
Determine the feasibility of ceramic components,

utilizing easily available, non-strategic materials.
Assure the end-product is affordable and

mass-producible.

The prime contractor of the AGT 101 is Garrett Auxiliary
Power Division (GAPD)* a division of the Garrett Corporation with the
Ford Motor Company supporting automotive application of the AGT 101

(Figure I). Standard Oil** has been a principal subcontractor since
the project was initiated.

Figure 1. AGT 101 Schematic

* formerly AiResearch and Garrett Turbine Engine Company

**formerly Carborundum

3



2.1 Technical Approach

Within the AGT Powertrain System Development Project,

Standard Oil was to provide component development, fabrication,

manufacturing feasibility, and cost studies, and participate with the

system contractor (GAPD) in performance assessment.

It was essential that development and demonstration of

ceramic components for the hot flow path of the AGT 101 be performed
as an integral part of the system development project. This would

enable both engine development and ceramic component development to

proceed with the best possible results.

Key to the technical approach to ceramic component

development is the "Closed Loop" development cycle shown in Figure 2.
The technologies comprising the closed loop operate in an iterative

manner to develop a reliable ceramic.

Materials
Design

Testing

Performance
Lndards

Fabrication

NDE

Figure 2. Closed Loop Component Development Cycle



Development of ceramic components requires the talents
available in many disciplines, yet these separate activities must be
closely coordinated. By promoting constant interaction between
specialists in the various disciplines, Garrett and Standard 0ii have
developed an effective development process which has achieved
remarkable technical progress.

Performance requirements and design involve establishing the
requirements of environment, reliability, lifetime, stress and
temperature distribution working with the mechanical and aerodynamic

design team to arrive at a viable design, then constantly reviewing
the development program to determine progress toward the requirements.

Materials include the types of ceramic materials and the

physical and mechanical properties of the materials that have
application to the AGT 101 engine. This also includes improving the

fundamental understanding of the materials, their properties, and the
ceramic powders from which they are derived.

Fabrication deals with forming, machining, firing and dense

grinding of ceramic components. A variety of fabrication techniques

are applicable to the various AGT 101 components. Net shape forming
is desirable for most turbine components in order to maximize
performance, reproducibility and eventual manufacture at the lowest
possible cost. Net shape forming can help minimize the incidence of

flaws that may result from machining, grinding or handling.

Non-destructive Evaluation (NDE) involves the development
and use of techniques available to detect critical flaws at current

strength levels, application of these to complex shapes, and the
development of techniques for higher strength material with inherently
smaller flaws.

Testing includes two elements. The first is material
characterization which is required for design, material and

fabrication improvement. The second includes testing ceramic
components under actual or simulated turbine operating conditions in
order to verify or change the design considerations, NDE capabilities,
or material and fabrication requirements.

In summary, the AGT program has represented the most
comprehensive use of all of these approaches to ceramic development.



2.2 Statement of Work

The Statement of Work developed by GAPD and Standard Oil

was completed April 11th, 1980. The following is a summary of

pertinent sections of this document.

STATEMENT OF WORK

CARBORUNDUM SUBCONTRACT

ADVANCED GAS TURBINE POWERTRAIN
SYSTEM DEVELOPMENT PROJECT

This document defines specific work tasks to be performed by

Carborundum as a major subcontractor to AiResearch Manufacturing

Company of Arizona, hereinafter referred to as AiResearch Phoenix.
These tasks relate to development of selected ceramic components

applicable to the development of an Advanced Gas Turbine (AGT)

powertrain for automotive applications.

This document addresses the following sections:

AiResearch Phoenix Program Schedule - This section
defines key dates when ceramic components are required
for Advanced Gas Turbine (AGT) engine development to
continue on schedule.

Work Breakdown Structure (WBS) - This section defines
the WBS for cost and technical management and is the
format to be used by Carborundum to provide a technical

work plan and price quotation.

Carborundum Evaluation Criteria - This section defines

the milestones and criteria by which Carborundum

material and component development will be evaluated.

Although the program is organized such that multiple

process approaches and materials will be evaluated at
the start of the program, the number will be narrowed

down at the milestone points.

Work Statement - This section defines specific tasks

(according to the WBS) to be included in the work plan,
schedule, and Carborundum quotation. To meet the tight
schedule of components for rig and engine testing, it

is suggested that component fabrication development be
initiated, as early as possible after the preliminary

design review (PDR), by use of existing or simplified

tooling prior to the time prints are released for

Design A components.

Component Drawings - Drawings have previously been
supplied to Carborundum. The PDR, fixed the engine



configuration and served as a release point for initial
componentdevelopmentefforts. A list of reference
drawings is included and will be updated as
configurations are finalized.

Reportin 9 Requirements - The reporting requirements,
that are identified in this section, enumerate the

different reports and number of copies required.

Specifically, the Work Statement addresses the turbine rotor

and ceramic structures comprising combustor transition, combustor
turbine baffle and backshroud turbine, turbine stator, turbine shroud,

turbine diffuser (duct, inner turbine and duct, outer turbine), and
flow separator housing. Carborundum shall conduct work in the areas

of design support/fabrication development, component qualification/
NDE/Proof, hardware delivery, and post test evaluation.



3.0 Quality Assurance and Non-Destructive Examination

Quality Assurance, which encompasses the use if not the

development of Non-destructive Examination (NDE), Is an integral part
of any product cycle. Similar to the closed loop approach to

development, the quality assurance involvement in the product cycle
can be depicted as shown in Figure 3.

_D Design &

evelopmer_,_ _ ,

(_ Product _ Q Product

Use Planning

< _,_ Quality Assurance

Involvement
Shipment in

Product Cycle

_Production _of Product

--_(

Purchase of

fg. ToolingJ

QRPUrchase of -_

aw Material_

Receipt of y
Materials

Figure 3. Quality Assurance Involvement in the Product

Development Cycle

Quality Assurance is involved in all stages of the product

cycle including design, development, fabrication, inspection, storage
and shipment. Q.A. engineering maintains a program for training and
certification of personnel who execute special inspection processes.

Certification requirements include examination to verify personnel

knowledge and proficiency in the inspection process.

For the AGT program, Quality Assurance procedures were used

as a screening device to determine the suitability of various NDE

techniques. NDE development was largely limited to the AGT Common
workscope (Appendix). However, new and promising techniques that have

become available during the timeframe of the AGT have been utilized to
the benefit of the program.



Section 4 includes component specific information regarding

how various NDE techniques were used. The following is a brief
summary regarding each technique and the types and sizes of flaws that
can be detected. The NDE analyses to be discussed include: raw

material analyses; visual, dimensional, and surface finish; X-ray

radiography; fluorescent dye-penetrant (FPI); ultrasonics; and
computer aided tomography (C.A.T.). Table 1 summarizes current NDE

capability for several of the available techniques.

Table I
Flaw Detection

Capabilities of Various NDE Techniques

Technique Flaw Detectability Remarks

Radiography Porosity 1-2% of part
thickness

Inclusion

Green 50 Nm

Sintered 25 pm

Depends on

Density of
Inclusion

X-ray Tomography Inclusions 50-100 pm Spatial
Information

Ultrasonics Inclusions (100 MHz) Component

Green 100 pm Shape
Sintered 25 _m Dependent
Cracks 100 pm

Dye Penetrants Surface Defects 250 pm Surface
Finish

Dependent

Acoustic

Microscopy

Surface and

Sub-surface

Cracks, Pores,
Inclusions

50 pm Micro-
structure

Dependent

Photoacoustic

Spectroscopy

Surface and Near
Surface Defects

50 pm

NMR Porosity
Binder

Distribution

Needs dopants
Provides

Spatial
Information

Neutron

Techniques

Binder

Distribution

Agglomerates

?

?



3.1 In Process Quality Assurance

Opposed to merely sorting out project components at the end
of the line, in-process Quality Assurance attempts to identify and
characterize defects as early in the process as possible. This serves

to narrow the scope of investigation when attempting to identify the

causes of defects, and prevents the unwarranted expenditure of

resources by further processing flawed components.

However, in many instances, flaws in green (unsintered)

components are difficult to detect. Flaws that went undetected in
green components may manifest themselves much more clearly after
sintering. Improved NDE of green components continues to be in need

of significant development.

Table 2 shows which NDE techniques may be used in the

various steps of the fabrication process.

Table 2

NDE Techniques Utilized During the Fabrication of Components

Finish

Spray Dried Green As-Fired Ground
Raw Material Powder Components Components Components

Chemistry
Particle Size
Surface Area

Sinterability Sinterability
Shrinkage
Microstructure

Density Density
Dimensions Dimensions Dimensions

X-ray X-ray X-ray

Tomography FPI FPI
Contour Contour

Tomography

Individual inspection plans were developed and utilized for

each component in accordance with Garrett's specifications: SC 6500 -
Drawing Interpretation, EMS 52309 - Penetrant Inspection, EMS 52334 -

X-ray Radiography.

3.2 Non Destructive Techniques

3.2.1 Raw Material Analysis

Raw Material is received as submicron SiC which is sampled

and subsequently tested for particle size distribution, surface area

and sinterability. Chemical analysis is either supplied by the vendor
or tested at local labs audited by the Quality Assurance department.

Spray dried powder used f_r various forming techniques is
tested for sinterability (3.13 g/cm minimum), shrinkage

10
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characteristics, and microstructure. Microstructures of sintered test

specimens are visually analyzed versus Standard Oil specifications

according to maximum flaw size, flaw proximity, and flaw
concentration.

In addition to the microstructure examination, lots of

premix are graded by shrinkage and their usefulness for particular
applications, customer requirements, and forming techniques can be

determined. This is particularly critical for fixed dimension tooling
or for close tolerance net shape components.

3.2.2 Visual, Dimensional Evaluation and Surface Finish

Prototype components are visually inspected for surface
flaws using a Bausch and Lomb binocular microscope with variable
magnification of 8-40 times.

Part profiles are checked on selected components (Figure
4) using a double stylus ContouReader model #250 with chart recorder
attachment. This unit produces a trace of the part profile at 5, 10

or 20 times magnification which then is compared to a mylar tracing of
the part specifications.

Figure 4. Contour Tracing of Transition Duct

11



Surface finish on flat sections of componentscan be
measuredusing a Taylor HobsonTalysurf 10 surface texture measuring
instrument. This unit is capable of measuring surface textures from
0.2 to 200 micro inches (0.01 to 5.0 micro-meters).

A Jones and LampsonEpic 214 optical comparator is used to
measuresomeof the more complexshapes having a readability of
.00005" and .0001 mm.

3.2.3 X-Ray Radiography

X-ray inspection consists of passing X-rays through a part
and documenting, on film, variations in X-ray absorption. Internal
discontinuities - cracks, voids, or inclusions - cause a density

variation as recorded on film. Typically, voAds appear as dark areas,

and high density inclusions as lighter areas. Changes in part
thickness are other sources of X-ray differential absorption. Section

thickness, flaw orientation, X-ray source size, energy and film are
all variables to be considered when developing inspection techniques

for ceramics which possess low linear attenuation coefficients of

X-ray absorptions (as compared to metallics) resulting in low contrast
radiographs making indications more difficult to detect.

X-ray inspection at Standard Oil utilizes a Magnaflux
MXK-IOOM microfocus unit with a focal spot size of 50 microns, IOOKV

and 1.0Ma (Figure 5) for all AGT 101 parts. Fine grain Kodak M and AA
film are used with the addition of .010" thick lead screens to
increase definition on complex parts by increasing contrast. Table
3 summarizes the detection levels achieved with this instrument on

seeded defects within sintered SiC discs dependent on material

thickness.

i ....ii!i!iiiiiii,r

Figure 5. Magnaflux Microfocus X-Ray Unit

12
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Table 3
X-RayRadiography Detection Levels

Disk Void Size Carbon Inclusion B4C Inclusion
Thickness pm Size (pm) Size (pm)
(inch) 50-125 125-250 50-125 125-250 50-125 125-250
0.1 D D D D PI D

0.125 D D D D ND D

0.25 ND D -- D -- D

0.50 -- D -- D -- D

D -- Detected
ND -- Not Detected

PI -- Possible Indication

The ability to detect small discontinuities by X-ray is
greatly increased when the largest dimension of the discontinuity lies
perpendicular to the imaging plane. Knowledge of the typical
indications resulting from forming or processing techniques aids the

ability to detect flaws since the view imaged will be one which
incorporates this knowledge. New parts or processes pose a difficulty

since past knowledge although useful may not provide the necessary
images.

To further aid in detecting flaws non destructively Standard

Oil's R&D Center at Warrensville, Ohio acquired recent|y a Ridge HOMX
161 real time X-ray unit.

Real-time X-ray allows manipulation of the part and

simultaneous viewing of the x-ray image. This system produces X-rays

from a 10 micron focal spot which pass through the object to be
inspected. The resultant X-rays strike an image intensifier which

convert this energy to light. This light is recorded by a video
camera, digitized and sent either directly to a video monitor or
through an image analyzer and then to the monitor. A Hughes image

analysis system is used to average frames to reduce noise, change
contrast ratios to produce either greater or less contrast, store

images for subtraction and thereby increase the ability to detect
discontinuities.

3.2.4 Fluorescent Penetrant Inspection

Fluorescent penetrant inspection (FPI) is used to detect

discontinuities open to the surface of materials such as cracks and
surface porosity. Fluorescent penetrants employ highly fluorescent

dyes suspended in a petroleum based liquid which is highly fluid and

can enter surface discontinuities through capillary action (Figure
6). The fluorescent dyes make indications detectable when examined

under an ultraviolet light source (Figure 7).

13



FIGURE (a). Following precleaning, pene-
trant Is applied to test surfaces and seeps into
surface discontinuities during the penetrant
dwell time.

into surface defect

FIGURE (b). Angled coarse warm water spray
removes excess water-soluble penetrant from
test surface but does not remove entrapped
penetrant from surface-connected dlscontinul-
ties such as cracks and pores.

6 b b / _ 6 Coarse warm water
spray rinse applied

at 45 ° to surface

Penetrant entrap

ment undisturbed

FIGURE (c). After test pans have been
washed, wet developer coating is applied and
dried. Porous developer coating acts as a blot-
ter to draw penetrant from entrapments to
form indications.

Spreading of

_"_ indication "_

Dry / ::;:;::;;::'::;;:;:::-': ::_ :_ ::::::": '-":-":-_""--":-'-"-""::_":: __::

0o,oodeveloper

layer

Depletion of liquid / _

penetrant from

entrapment

FIGURE (d). Near-ultraviolet light excitaUon
causes fluorescent penetrant indication to
glow in dark. Visible color penetrant is
observed under ordinary white light condi-
tions and does not require ultraviolet radia-
tion. Following inspection, parts are cleaned
to remove developer and penetrant residues.

Fluorescent light

z i n:ii:'ti°on'r:em

_:_'!!:!!_!_:"_"_:_ ,.....:.:-_-_. ::-:-.:---.:-- .:---:-

."It ................. _ ......................

Depleted volume f
in entrapment "_

Figure 6. Schematics Showing Fluorescent Penetrant
Inspection Treatment of Components
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Figure 7. FPI Room - Preparation Area (left),

Inspection Under Ultraviolet Light (right)

FPI at Standard Oil is conducted using a Magnaflux CA28W

testing unit with both water-washable (ZL17C) and post-emulsified
(ZL22C) penetrant testing capabilities. Typical indications can be
detected and categorized to approximately the .005" range regardless

of the configuration (spot or linear indications). Line drawings
(Figure 8) were used to document the location of indications and a

calibrated comparator was used to estimate the size.

Water-washable penetrants are used to inspect as-sintered
components which will be subsequently diamond ground. Since very fine
flaws are less critical to detect on surfaces which will be removed

the water-washable penetrants affords an economical means of detecting

indications which prevent further processing of components of suspect
quality.

The post-emulsified penetrant employs a lipophilic

emulsifier to render excess surface penetrant washable. Thi, testing

system allows detection of both fine flaws and wide shallow
discontinuities.

15



PART DESCRIPTION Segmented Turbine Stator CUSTOMER P.O. NO. 1931619

CUSTOMER Garrott PROJECT NO. 489-E5

PART DWG. NO. L-3846162 PART SERIAL NO. 26-586

Visual

P

CORCSVe

/

Blister / 1

.0O5

Convex

Zyglo
P?

X-Ray

Figure 8. NDE Inspection Summary
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3.2.5 Computer Aided Tomography

Computer Aided Tomography (commonly known as C.A.T.
Scanning) is an X-ray technology by which the image of the interior of
a sample can be analyzed quickly, with little or no sample

preparation. Primarily developed for medical use, C.A.T. Scanning has
been recently applied to materials analyses.

Tomography is the process of imaging a particular

cross-section or "slice" of an object. Various terminologies for
"computed tomography" are as follows:

C.A.T. - Computer Aided Tomography, or Computerized Axial Tomography

C.T, - Computed Tomography

R.T. - Reconstructive Tomography

C.T.A.T. - Computerized Transverse Axial Tomography

The latter is the most limited term and refers to

cross-section images transverse to the long axis of the sample.

A typical C.A.T. scanning technique uses a collimated X-ray

beam and detector array which makes a series of transverse passes
across the sample at various angles. Beam attenuation data measured

at intervals along the length of each transverse scan is c@mputer
processed to generate a 256 x 256 matrix. Each pixel (lmm_

resolution) is assigned a CT or delta number and a gray level is
calculated as a function of its attenuation factor.

For example:

Dark Color = Low CT No. : Low Density
Light Color : High CT No. : High Density

Generally, C.A.T. scanning can be used to detect composition
variations, density variations, and the presence of voids or
fractures.

Early in 1986, Standard Oil's Warrensville (Ohio) R & D
Center obtained a Deltascan 100 C.A.T. scanner (Figure 9). This

second generation unit consists of a tungsten sourceX-ray beam that
provides three collimated beams and an equal number of detectors for

measuring the attenuation of the X-rays as they pass through an
object. This type of scanner, a six beam/detector configuration,

measures transmitted X-ray intensity during linear translationA of the
source and detectors at one to six degree increments for a 180v

rotation (Figure 10). The result is a series of transmitted intensity

profiles obtained at multiple angles through all points within the
cross section which is being imaged.

17
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F i g u r e  9. C.A.T. Scanning Equipment 

16th Translation 

F igu re  10. The Combined R o t a t i o n a l - T r a n s l a t i o n a l  Scan 
Sequence w i t h  Mu1 t i p 1  e D e t e c t o r s  Representat ive 
o f  t he  Del tascan 100 C.A.T. Scanner 
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As shown in Figure ii, a slice can be divided into a n X n

matrix of voxels (volume elements). The attenuation of N X-ray
photons passing through a single voxel with a linear coefficient p

results in N transmitted photons:

N = No exp(-_x)

where x is the dimension of the voxel in the direction of the X-Rays.
Parameters of a material that determine the linear attenuation

coefficient of a voxel include density and chemical composition. For
n successive voxels, each with its own attenuation coefficient, the

number of transmitted photons for one X-ray beam is:

N = NO exp - (pl+P2+P3+...+pn) x

No

No #16o

N161 N162 N32o

Figure 11. Incident Intensity for a
160 x 160 Matrix of Voxels

The incident intensity is attenuated differently along the

various paths the beam traverses, depending on the number and
attenuation coefficients of the voxels in each path. Thus, different
values of N are obtained as the X-ray beam passes through different

series of voxels. An algorithm uses these values to reconstruct an
image that is really a matrix of linear attenuation coefficients,

termed CT numbers after rescaling. For samples with a homogeneous
chemical composition, CT numbers correspond directly to density.

The Deltascan 100 generates a 256 x 256 voxel image with

each voxel having dimensions of i x 1 x 10 mm (lOmm is the thickness
of the slice). Each voxel is assigned a gray level based on its CT

number with a dark color corresponding to a low CT number (or linear
attenuation coefficient) and a light color corresponding to a high CT
number.
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I d e a l  sample s i z e  i s  10 inches i n  diameter,  which i s  t h e  
s i z e  o f  t h e  c i r c l e  scanned. Samples as l a r g e  as 17 inches i n  d iameter  
can be accomnodated i n  the  inst rument ,  b u t  a 3.5 i n c h  r i n g  around t h e  
pe r ime te r  w i l l  n o t  be imaged. There i s  no upper l i m i t  on sample 
length,  as samples can be f e d  through t h e  instrument.  The t h e o r e t i c a l  
l o w e r  l i m i t  on sample s i z e  co inc ides  w i t h  the  dimensions o f  t h e  voxels  
making up t h e  image. I n  p r a c t i c e ,  r e s o l u t i o n  decreases as sample s i z e  
decreases, and o n l y  general  i n f o r m a t i o n  can be obta ined on samples 
l e s s  than one i n c h  i n  diameter.  

M a t e r i a l  samples scanned t o  da te  i n c l u d e  r e s e r v o i r  rock 
cores and engineered m a t e r i a l s .  I n t e r n a l  f ea tu res  d iscerned i n  t h e  
cores i n c l u d e  f r a c t u r e s ,  d r i l l i n g  mud invas ion,  and general  l i t h o l o g y .  
I n i t i a l  s t u d i e s  i n d i c a t e  t h a t  f o r  homogeneous i n t e r v a l s ,  an i n d i r e c t  
r e l a t i o n s h i p  e x i s t s  between CT number and rock pe rmeab i l i t y .  Th i s  
promis ing r e l a t i o n s h i p  p o t e n t i a l l y  could r e s u l t  i n  C.A.T. scan 
a n a l y s i s  r e p l a c i n g  c e r t a i n  types o f  c o s t l y  and time-consuming 
l a b o r a t o r y  core ana lys i s .  

I n t e r n a l  f e a t u r e s  d iscerned i n  s i l i c o n  ca rb ide  t r a n s i t i o n  
duc ts  (F igu re  12) i n c l u d e  d e n s i t y  v a r i a t i o n s  and the  presence and 
d i s t r i b u t i o n  o f  voids.  I n  one p a r t i c u l a r  u s e f u l  r e l a t e d  a p p l i c a t i o n ,  
r o t o r s  were scanned p r i o r  t o  HIPing ( h o t  i s o s t a t i c  p ress ing ) ,  a 
process designed t o  increase d e n s i t y  and u n i f o r m i t y .  Dens i t y  
v a r i a t i o n s ,  bo th  w i t h i n  and between r o t o r s ,  were q u a n t i f i e d .  The same 
r o t o r s  were scanned again a f t e r  HIPing. By t h e  comparison o f  CT 
numbers, i t  was determined t h a t  t he  process had been e f f e c t i v e .  F i g u r e  
13 shows t h e  d e n s i t y  d i s t r i b u t i o n  o f  S i c  r o t o r s  be fo re  and a f t e r  
H I  P i  ng . 

F igu re  12. C.A.T. Scans o f  S I C  T r a n s i t i o n  Ducts - 
Molded ( l e f t ) ,  S in te red  ( r i g h t )  
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Figure 13. C.A.T. Scans of SiC Rotors Before and After HIPing

The Deltascan 100 has two disadvantages: a 1 cm slice
thickness and a fixed scan circle size. This results in a poorer
resolution than what is available on newer generation instruments.
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3.3 Material Evaluation

Material performance evaluation is another important means

of assuring quality and component reliability. Periodic material
evaluation can provide a measure of material consistency and/or

development progress depending on the program and technological
thrusts. One of the goals of the AGT 101 program was the development
of manufacturing processes which are capable of duplicating test bar

material properties in complex sintered alpha silicon carbide engine
components.

Sintered alpha silicon carbide (SASC) is an essentially

single phase material with a fine microstructure having a grain size
in the range of 4 to 8 um. Components are made from submicron size

alpha SiC powder compacts w_ich are pressureless sintered at
temperatures exceeding 2000 C under inert atmospheres. Most
commercial ceramic fabrication techniques such as slip casting,

injection molding, isopressing/green machining, etc. have been

successfully employed in the manufacture of complex shapes.

Material properties are commonly determined using

modulus of rupture (MOR) bars (I/8" x I/4" x 2") formed individually
or cut from small plates, and tested in a four-point bending mode.

Room temperature and elevated temperature strength data were
collected on samples of twenty to thirty bars to develop the Weibull

statistics and establish comparative baselines. Lot qualification
bars were supplied with components delivered for a threefold property

data comparison between baseline, lot qualification, and bars cut from
components. This methodology allows a comparative assessment of the
various forming methods which are used to fabricate variable profile,

complex configurations. However, only a limited number of components
were evaluated using this destructive measure. Table 4 provides a

summary of the data obtained on two backshrouds and a transition duct,

both configurations made by isopressing and green machining, and a
slip cast combustor baffle.

An evaluation of these data indicates that the average

characteristic strength of MOR bars cut from components is frequently
lower than the baseline test bars. However, this table, also

indicates that it is possible to fabricate components which exhibit
material properties which approach or even duplicate baseline data.

The generally high variability of all of the data indicates that
further processing improvements and in process controls are necessary

to achieve reliability factors suitable for high volume economic
fabrication.
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Table 4

Room Temperature Flexure Strength Comparison
(GAPD Test Data)

Component/

Source

Material

Test Bar

Orientation

Turbine r _:_"Backshroud

S/N 101A L

Turbine I Tests
Backshroud , _r

S/N 104A I

s/NTransiti°nDuct113 _e_

Combustor Test

Baffle _f_s

S/N 122 I

Component Cut-Up Certification Bars Baseline Test Bars

Strength, Modulus Strength, Modulus Strength, Modulus

ksi (Standard ksl (Standard ksl (Standard

No, of Characteristic Deviation) No. of Characteristics Deviation) No. of Characteristic Deviation)

Bars (average) Welbull Bars (average) Welbull Bars (average) Welbull

77

(8.0)

12 41,8 14.2 NOt Tested 30 57.7*

(40.4) (3.1) (54.3)"

5 54.4 62 Not Tested 30 57.7"

(49.0) (7.7) (54.3)

23 34.3 9.1 5 36.9 6.8 30 57,7"

(32.6) (4,0) (34.6) (4.6) (54.3)

5 51.6 8.9 4 67.5 168 30 49.4

(49.1) (5.3) (65.7) (3.8)

All test bars have a 0.250 x 0.125 inch cross section, have been ground in longitudinal direction, and were heat treated 2 hours at 2200 ° F. Flexure

testing was performed at 0.02 inch per minute cross head speed with 1.5 inch outer span, 0.75 inch inner span.

*Not heat treated

7.7

(8O)

7.7

(8.0)

5.8
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4.0 Component Development

4.1 Rotor

Work on the unique rotor development was initiated in late

1979 and continued through November 1981. Sintered alpha silicon
carbide and several reaction bonded silicon carbide systems were

inveBtigated with respect to their fast fracture behavior at RT and
1200 C. Material development was carried out on individually prepared

MOR bars.

Fabrication development was conducted using three distinctly

different methodologies. Injection molding of a solid one piece rotor

was investigated together with the fabrication of a bonded rotor made
of an injection molded shell and a hot pressed core and thixotropic

casting of a reaction bonded silicon carbide rotor. All processing
activities were carried out on a simulated (non-bladed) rotor. This

approach reduced cost and tooling lead time significantly while it

permitted assessment of initial fabrication progress.

The non-bladed rotor ("doorknob") as shown in Figure 14
simulates the mass of the bladed rotor and the shape of the rotor hub.
Based on future needs to produce a complex bladed rotor (Figure

15) Standard Oil selected the injection molding process to produce the

part. An injection molding tool was designed with removable cores to
produce two shell configurations as well as a solid hub. The shells

represented thicknesses within the processing limits of then current
technology while the solid hub provided development opportunities for
thick section binder removal and subsequent sintering studies.

P 2.650

2.600 R

1.700

4.250

Figure 14. Simulated Rotor Design
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3.015 / T1.671

Figure 15. Bladed Rotor Design

4.1 .i Fabrication Development

4.1.1.1 Injection Molding

Rotor Shell Molding

The injection molding tool was designed with the dual

molding approach in mind for producing either a single piece solid
hub, or by changing cavity inserts, a shell having nominal wall

thickness varying from approximately 3/8 inch to 3/4 inch. The design
of the tool was completed December 1979 and the tool was received at
the end of the first Quarter of 1980.

The tool was installed on a 250T Reed Reciprocating Screw

Injection Molding Machine at G-W's (subsidiary of Carborundum at the
time) alpha silicon carbide test molding facility. Prior to molding,
the ejector mechanism was reworked to provide improved sliding action.

The shell configuration was selected for the initial molding trial in
April. This molding was conducted to assess functional design and to

verify dimensional accuracy of the tool.

The core was designed to seal on four sections of the sprue

bushing thereby allowing the cavity to fill through four equally
spaced gates. The molding compound has a tendency to jet into the

cavity and producing strands which coil and fold during packing.
Thus, the defect potential increases unless sufficient pressure is

available to compress and weld the strands into a solid mass.
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All of the rotor shells showedvisible flow lines
concentrated at the lower section of the inner rim. A sketch of the
molded rotor shell is shownin Figure 16 and the arrows indicate the
region where the flow lines were predominantly observed. Attempts
were madeto correct this problem by enlarging the gates to allow
maximumpressure transmission for a longer period of time to obtain
better packing and minimize the incidence of flow lines. Subsequent
molding trials with the enlarged gates produced no noticeable
improvements.

Figure 16. Cross Sectional View of First Generation
Rotor Shell

A total of 39 simulated rotors were molded, 15 of these were
produced in the tool after gate enlargement. Attempts were madeto
optimize the molding conditions by incorporating changes in four basic
molding parameters: barrel temperature, pressure, velocity profile,
and mold temperature.

The barrel temperature was varied between300 an_ 350°F with
the majority of individual molding trials conducted at 310VF.
Essentially three pressure levels were investigated: 1000, 1400and
1700 psi. The two higher pressure levels were used most frequently.
Several velocity profiles were tested with equal importance betweena
constant and a variable velocity profile utilizing slow, mediumand
fas_ speeds. Finally the mold temperature was varied between80 and
125VF.
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Changesin molding conditions produced only subtle changes
in the molded product; a decision was therefore made to modify the

core to provide a thinner wall in the problem area. A molding was
carried out, and conditions were determined to produce processable

parts. The net result of the core modification was a minimization of
flow lines. Flow lines that were noticed, were much smaller and

closer to the edge of the inner rim.

Two molding trials to produce thin shelled simulated rotors
(Figure 17) were conducted during the first half of 1980.

Approximately 80 shells were molded. Sixty of these used the standard
molding material and the balance used a new molding compound with

improved rheological properties and bake-out characteristics.

Figure 17. Cross Sectional View of Second
Generation Rotor Shell

•Solid Rotor Molding

Preliminary molding trials for producing a solid simulated
rotor were conducted in May of 1980. Initially, the thickness of the

part posed problems during molding due to shrinkage on cooling and air
entrapment during filling. By changing molding conditions, shrinkage

could be accommodated and macro-porosity due to air entrapment could
be reduced but not completely eliminated (Figure 18).

Even though it was expected that this macro-porosity could
completely be eliminated through molding optimization and tooling

changes, work continued only on a low efforts basis because of

problems in the subsequent binder removal step.
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Figure 18. Molded Simulated Rotors with Macro-Porosity

A tool modification aimed at reducing the macro-porosity in

the rotor center was completed January 1981. The plate containing the

spherical bottom detail was attached to a separate hydraulic system.
After packing during the molding cycle, a secondary compaction was
initiated and held during cooling. Figure 19 shows the two halves of

the mold.

Two molding runs were conducted using two different molding

compounds, the previously used compound as well as a newly developed

compound which had demonstrated good binder bake out characteristics
in thick cross sections. The tool modifications implemented proved to
be successful. Dense void-free molded shapes were obtained with both

compounds. Several rotors were processed through binder removal and

sintering, but each of the rotors exhibited cracks after process

completion.

ORIGINAL FACF_ _:_
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F igu re  19. Revised I n j e c t i o n  Molding Tool f o r  
S o l i d  Simulated Rotor 
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Post Moldinl Processinl

Binder removal is one of the most critical steps in the

production of sintered alpha silicon carbide shapes. Although other
techniques were considered, thermal degradation of the binder was
selected since substantial prior experience existed with this method.

A comparison of the three molded shapes, thick-walled and thin-walled
shell as well as solid one-piece rotor hub, indicated clearly the
increased difficulties experienced with larger cross sections.

In order to be successful in the removal of organics from an

injection molded silicon carbide body, heat was applied slowly at a

gradually increasing rate to produce micropassages which allow the
decomposition products from the binder to escape from the body without
causing any cracks. An inert environment is required to prevent
oxidation of the SiC at peak bake-out temperatures. A uniform

temperature distribution is needed in the ovens to remove the binder
without introducing cracks in the part. The overall length of cycle
and rate of temperature rise is dependent on part size and cross
sectional thickness. Cam controlled ovens with percentage on-off

timers were used for binder bake-out of the injection molded simulated

rotor shapes.

Towards the end of the first quarter of 1981 a successful

bake-out procedure had been devised yielding components without cracks

prior to sintering. Densification was achieved during sintering but
cracking in sintering could not be eliminated. Work on the solid
non-bladed rotor was suspended shortly thereafter.

4.1.1.2 Bonded Rotor Development

The goal of the bonded rotor program was to produce an

integral simulated rotor having properties equal to or better than the
monolithic shape. The major thrust in this development consisted in
determining conditions and procedures required to produce a spinnable
rotor.

Several different approaches were investigated with respect

to forming method and condition of the core material and the procedure

applied for joining the core to the injection molded shell by hot
pressing. Presintered or fully sintered cores made by isopressing and

green machining were used for most of the hot pressing trials in
conjunction with a flowable silicon carbide mix to provide the
interface. To reduce the porosity in the interface between core and

shell after hot pressing, several additional variables such as either

cold isostatic precompaction of an assembled unit, increased hot

pressing pressure or pulling of a vacuum prior to hot pressing were
introduced. In addition, cores were also made by hot pressing or by

filling the shell cavity with uncompacted mix and then applying

temperature and pressure.

A total of 10 conical segments produced from isopressed

stock were sintered in June 1980 to provide core stock for the thick

wall shell structure. At that time work was also initiated on the
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cores for the thin-walled shells. During the same month a graphite

mold was designed and procured for hot pressing experiments. The
design of the mold could also accommodate a bladed rotor shell in the

event that hot pressing techniques were to be used for the fabrication
of the final rotor.

Two hot pressing attempts, as depicted in Figure 20, were

made during that period using the conical segment and the thick shell

configuration.

Carbon Powder

Insert

Top Plunger

Carbon Powder

Bottom Plunger

Plunger Mix

Sinterable SiC Mix
I

Rotor -- Shell

Tapered Ring

Parting Agent

Figure 20. Schematic of Hot Pressing Arrangement
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The most frequent problems encountered during this facet of
the rotor development program were breakage of the graphite mold and

cracking of the injection molded shell during hot pressing.
Additional development activities addressed issues such as porous
interface between core and shell and inadequate core material

strength.

One bonded simulated rotor which had passed X-ray analysis

was delivered and spin tested at GAPD. The assembly consisted of

an isopresse_ and machined core with a non-optimized sintered density
of 2.62 g/cm _ (81.5% theoretical), which was bonded to a sintered

injection molded shell. The speed attained at failure was 72,400 rpm.
A failure analysis performed by GAPD indicated that fracture

originated within the core and that the maximum principal stress
attained was 16.3 ksi. The results from the failure analysis

indicated the need to improve the strength of the core material.

Work on the bonded rotor development program was suspended

at the end of 1980 in favor of focussing additional resources on the

material development aspect of the rotor program and on increasing

material strength of the core.

4.1.1.3 Thixotropic Casting

A feasibility study and a narrowly defined development

program on thixotropic casting of simulated rotors made of reaction
bonded silicon carbide was carried out during the second half of 1980.

This shape represented the thickest cross section that had been

attempted by thixotropic casting. Some mix separation caused during
the vibratory casting procedure was observed but could not be
eliminated completely. Initial difficulties in obtaining a completely
siliconized rotor hub were overcome towards the end of the project.

Still, the process indicated a high degree of cracking during

siliconizing.

The material selected for this fabrication process was 400

grit SiC grain (37 _ and finer) mixed with resins to form a thick

paste which flowed under vibration. Rubber molds were used for

forming the simulated rotors and the cast and cured shapes were
furnaced at 1850vC. Silicon metal was introduced in form of a

preweighed cover mix. These conditions resulted in a relative
homogeneous microstructure in the center of the simulated rotor hub.
Figure 21 shows a typical etched microstructure at 200

magnification.

Material representative of these cast rotors had a mean

strength of 43.5 ksi (4-point bend test) and a Weibull modulus of 8.3

(48 specimens) at room temperature. This was approximately a 40

percent increase in strength since work began on thixotropic casting.
Subsequent cast material showed mean strengths of up to 49.95 ksi at

room temperature.
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Figure 21. Microstructure of Thixotropic Cast Rotor

4.1.2 Material Development

Material development activities were carried out from mid

1980 through the end of 1981. Table 5 compares flexure strength data
of Standard Oil's silicon carbide materials at that time.

Table 5

Silicon Carbide Materials
Evaluated for Simulated Rotor

Material

Sintered Alpha SiC
Hot Pressed SiC

Thixocast RBSiC

Fine Grain RBSiC
Ultra Fine Grain

RBSiC

Trademark

Hexoloy'" SA

Hexoloy'" KT

Hexoloy'" KX-01

Hexoloy TM KX-02

25° C

MOR m

61.5 5.8

54.0

36.9 3.1
68.6 --

53.6 --

1100 ° C

MOR m

69.5 --

1200 ° C

MOR m

57.5 6.0

57.7 17.0

105.6 --
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It was decided to focus material development on the sintered

silicon carbide because of its strength at room temperature and its

strength retention at high temperatures. A series of alpha SiC mixes
containing various sintering aids were prepared and plates made by hot

pressing were characterized (Table 6).

Table 6

MOR Data for SA Mixes with Additives

Additive "A" "B" "C" "D"

Density, g/cm 3 3.181 3.176 3.184 3.160

MOR, ksi 60.2 41.6 49.9 71.1
Std. Dev. 11.7 5.7 6.3 6.2

A Weibull modulus of 10.4 was measured on the mix with
additive "D" and a characteristic strength of 74.2 ksi was calculated.

Attempts to scale up the procedure for a mix containing sintering aid

"D" yielded results with high variability. Six plates were prepared
and MOR samples cut from each plate produced the following results

from (Table 7).

Table 7

MOR Data for SA with Additive D

Plate Number

1 2 3 4 5 6

Strength (ksi) 73.2 67.3 58.9 47.8 50.0 50.8
Std. Deviation 9.2 15.0 15.0 3.1 5.5 14.1

Experiments conducted to assess the influence of the

sintering aid, temperature, and hold times were inconclusive. Work on

improving properties of a hot pressed SiC was terminated January 1981
because of the relative low strength levels, about equal to the

pressureless sintered material, high variability in strength, and
because injection molding became the prime fabrication candidate.

Based on these facts development work concentrated on a high

strength material which could also be formed by injection molding.
Hexoloy_KX-02, an ultrafine grain RBSiC, was identified in May 1981 as

the material candidate Standard fine grain RB_iC (Hexoloy_KX-01) has
an average SiC grain size of 7 p, while Hexoloy-KX-02 consists of

about 1-2 p SiC grains. Typical microstructures of these two

materials are shown in Figure 22 and room and elevated temperature
fast fracture data for both materials are given in Table 8.
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Figure 22. Microstructures of Hexoloy TM KX-01 (left)
and Hexoloy TM KX-02 (right)

Table 8

MOR Data for Hexoloy TM KX-01 and KX-02

Hexoloy KX-01

MOR (ksi)
Standard Deviation (ksi)
No. of Samples

Hexoloy KX-02

RT 1100°C 1200°C 1300°C
m

68.6 69.5
9.7 3.8
9 10

MOR (ksi) 55.2 98.0 71.2

Standard Deviation (ksi) 16.3
No. Samples 3 15 3

Evaluation of the high temperature strength data indicates a
strength versus temperature behavior which differs from that which is

commonly experienced with SiC materials. Figure 23 shows a typical
stress-strain curve for a four-point bend test of sintered alpha SiC

Hexoloy TM SA at room temperature with essentially linear behavior up to

fracture representing a typical _rittle ceramic behavior. The loading
curve for Hexoloy TM KX-02 at 1200vC in contrast isshown in Figure

24. This graph shows a concave negative slope as the load increases

followed by an inflection point and a slight concave positive slope,
indicating the material undergoes plastic deformation.
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Figure 23. Stress-Strain
Curve for HexoloyTM SA
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Figure 24. Stress-Strain

Curve for Hexoloy TM KX-02
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The peak strength of the latter graph is not a breaking
point but rather a very rapid decrease in load which corresponds to an

upper yield point in metal testing. Typically, the bend test is
stopped at this point because of machine displacement transducer

travel limitations. Therefore, it is not known whether a lower yield
point exists as in the case of low carbon steel tensile testing. It
is also not known whether the upper yield strength represents the

highest strength of the material.

There are no indications of plastic deformation at room

temperature and it is believed that the high strength obtained at high
temperature is caused by plastic flow of the silicon phase. Stress
concentrations around flaws are reduced by localized plastic flow,

thus, the material is stressed more evenly and higher strengths are

obtained. Sil_con is known to have a brittle to ductile transition
point near 700vC.

It was also demonstrated that good material properties can

be obtained using fabrication techniques such as cold pressing, hot
isostatic pressing, cold isostatic pressing, and injection molding.
MOR results given in Table 9 indicate that there is a potential for

producing a bladed rotor with this material. However, no additional
rotor development program was initiated.

Table 9

Four Point Bend Test Results on Hexoloy TM KX-02

Original Procedure

Strength, ksi

25 ° C

.75 Top Span

55.29

65.33

55.17

56.99

55.19

75.80

46.53

54.06

37.14

35.14

Mean: 53.66

S.D. 12.07

1200 ° C

.50 Top Span

77.92

110.40

93.75

115.10

108.30

101.60

121.30

113.30

106.80

107.10

Mean: 105.60

S.D. 12.26

New Method of

Incorporating AddlUve

25 ° C

.75 Top Span

59.82

84.80

75.51

91.32

94.65

77.04

73.70

Mean: 79.56

S.D, 11.82

1200°C

.50 Top Span

171.20

104.40

140.70

148.50

108.20

184.10

136.10

186.60

119.00

Mean: 144.30

S,D. 31,08

Cold Pressed

Strength, ksi

25 ° C

.75 Top Span

85.35

108.30

56.68

59.03

90.04

92.63

65.52

65.83

Mean: 77.82

S.D. 18.71

1200 ° C

.50 Top Span

134.5

152.5

157.0

111.9

158.9

161.9

147.1

142.4

182.1

Mean: 149.81

S.D. 19.57

Isopressed

Strength, ksi

25 ° C

.75 Top Span

91.38

91.34

87.23

89.95

80.07

94.99

101.00

87.39

104.30

101.90

Mean: 92.96

S.D. 7.61

1200 ° C

.50 Top Span

134.80

128.40

131.30

134.50

111.70

128.00

122.00

125.70

122.70

107.90

Mean: 124.50

S.D. 8.94

NOTE: Test Bar Size = .1" x .2" x 2"

Cross Head Speed = 0.02"/min.

37



4.2 Static Structures

Several joint meetings were held early in the program to
finalize component design and to ascertain that the fabrication route
chosen could achieve the desired tolerances on the sintered alpha

silicon carbide components. The following Table 10 lists the

components which were considered for fabrication development.

Table 10

Component Overview

Component

Turbine Inner Diffuser
Turbine Outer Diffuser

Duct Spacer
Turbine Backshroud
Turbine Shroud

Integral Turbine Stator
Segmented Turbine Stator

Regenerator Shield
Combustor Liner
Combustor Baffle
Transition Duct

Fabrication Method

Slip Casting
Slip Casting

Isopress/Green Machine
Isopress/Green Machine

Injection Molding
Injection Molding

Injection Molding
Isopress/Green Machine
Slip Casting
Slip Casting

Slip Casting

Work on the individual components commenced in May 1980.
Three different forming methods isopressing/green machining, slip

casting, and injection molding were selected to produce the different
shapes in order of complexity. Isopressing/green machining was the

preferred method for simple geometrical shapes, whereas injection
molding can accommodate highly complex configurations with variable

wall thicknesses. Slip casting was chosen for components with complex
outside flow configurations combined with constant wall thicknesses.

The casting approach employed was based on drain casting principles
where only the outside contour can be determined by the fixed mold.

4.2.1 Turbine Inner Diffuser

The turbine inner diffuser, as shown in Figure 25, had been
revised during the joint design/fabrication assessment meetings to

accommodate the slip casting process. This fabrication technique has
been chosen because of the size of the component (17.3" maximum

outside diameter), low tooling cost, and the fast turnaround time,

especially when compared with injection molding tooling.

The aluminum model was received August, 1980 and a plaster mold

was fabricated. A change in the part design, which eliminated six of

the originally nine locating lugs, was incorporated in a second mold.
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Figure 25. Turbine Inner Diffuser
(Initial Design A, Revised Design B)
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Fabrication development on the slip cast sintered alpha

silicon carbide turbine inner diffuser was terminated due to funding

limitations at the end of the third quarter.

4.2.2 Turbine Outer Diffuser

The initial design of the turbine outer diffuser, as shown

in Figure 26, did not require any configuration changes to accommodate

the drain casting approach selected as the preferred fabrication
method. It was decided to prepare castings without the location

holes, which would be drilled after sintering to minimize anticipated

problems due to warpage and cracking near the rim.

I
_- 13.66

I

I

["--'- 3.42 "--'_l/
,. _J %"J'L L

.764
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J

.850

Figure 26. Turbine Outer Diffuser Design

The aluminum model was received in August of 1980. A mold

was fabricated and casting resumed shortly thereafter. The first cast

unit developed a crack during drying.

Fabrication development on the slip cast sintered alpha

silicon carbide turbine outer diffuser was also terminated due to

funding limitations at the end of the third quarter.

4.2.3 Duct Spacer

The duct spacer, as shown in Figure 27, did not require any

design modifications for better fabricability. This component was

fabricated by isostatically pressing alpha silicon carbide tube stock
and machining it in the green state to predetermined dimensions. Each

component was sintered on a mandrel. After passing X-ray, FPI and
dimensional as-fired inspection, units were ground at an outside

vendor and resubmitted for final inspection which consisted of FPI and

dimensional evaluation.
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Figure 27. Duct Spacer Design

Work on the duct spacers commenced in July of 1980 and
continued through November 1980. The shipment of 30 finish ground

components completed this program task.

4.2.4 Turbine Backshroud

The initial design of the turbine backshroud, as shown in

Figure 28, required no fabrication related design modifications.
Isopressing of cylindrical stock combined with green machining was

selected as preferred fabrication route. The green machined

components were sintered per established procedures and subjected to

dense grinding to obtain final dimensions and contour.

Work commenced in June of 1980. Six components were

delivered for evaluation during the second quarter of 1981. Results

of the evaluation revealed that the machined contour facing the rotor

was not within print tolerances. Consequently, the fabrication of a
second set of components was initiated in October of 1981.

The first six articles were produced on a lathe equipped
with a template tracer attachment. The template was developed from

coordinates having 12 points/inch. The contour of the second group of
turbine backshrouds was produced on a CNC lathe incorporating 50

points/inch for improved accuracy. The new coordinates were used to
generate a program for the CNC lathe. Precise sintering fixtures to

eliminate distortion during densification were fabricated utilizing a

similar CNC lathe machining procedure. Two finished components were

used to develop the lapping and grinding procedures to produce a

precise contour within the tolerance band.
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Figure 28. Turbine Backshroud

(Initial Design)

Close green machining control of the contour and the use of

the newly developed sintering fixtures, however, resulted in
components which were close to the desired tolerance band and required

no additional contour grinding (Figure 29). Six finish ground turbine
backshrouds were delivered in June of 1982. This shipment completed

the contractual requirements per the established work plan.

Figure 29. Sintered Backshroud
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During rig testing at Garrett it was found that the regular

heating rate during start-up created excessive tensile stresses in the

center of the turbine backshroud causing crack development and failure
of the component. To allow for further testing of this component in

SASC GAPD pursued two alternatives. One alternative was to change

the sintered components by removing the high stressed center portion.

As a trade-off, however, an increase in leakage had to be tolerated.
The second alternative was a modified design combined with lower

transient stresses during start-up by utilizing a slower heat-up rate.

This approach increases the performance at maximum test temperature

because of reduced leakage over alternative one.

Work on the new design (Drawing PA3611439), as shown in
Figure 30, was initiated in August of 1986. Four backshroud blanks

were made of isopressed alpha silicon carbide and were supplied
between August and October of 1986. The 1987 shipments consisted of 2

sets of three fully ground components (Figure 31) supplied towards the

end of the program. The first set consisted of pressureless sintered

alpha silicon carbide (Hexoloy TM SA) and the second set of a
pressureless sintered particulate composite of a silicon carbide

matrix with discrete particles of titanium diboride (Hexoloy TM ST).

4 7.086

6.110
Dia.

5.325

I1

D

I,,"_IAIBI.0401 .382

T I

.I
Figure 30. New Backshroud Design
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Figure 31. Sintered Backshrouds - New Design

Several backshrouds have been evaluated in rig and engine

tests. One component, machined from a sintered disk, accumulated 13
hours in a rig test at 2500 F in Octobernof 1986, and backshrouds 105
and 106 were tested successfully in 2100VF engine tests in different

engine builds and multiple cycles.
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4.2;5 Turbine Shroud

The initial design of this component, as shown in Figure
32, combined the turbine shroud and turbine diffuser. In order to

fabricate this component in one piece, it was suggested that a cold

pressed block be green machined. Because of the part size and shape,

low yields and long machining times would prohibit low cost/high

volume production. Consequently, it was decided to produce this item
in two sections and incorporate additional small changes on the

individual drawings.

Turbine Shroud

Figure 32. Initial Turbine Shroud Design

Subsequently, it was decided to fabricate the turbine shroud

in the redesigned form (Drawing L3846151), as shown in Figure 33,

using injection molding as the primary approach. The slip casting

process with extensive green machining and final grinding was to be
used as a back-up in the event that insurmountable problems would

surface with the injection molding process. The slip casting process

in this case was based on a drain casting approach where a constant
wall thickness is produced. To generate a component as shown below, a

thick walled component would have to be cast first and additional

features would be introduced through machining.
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Figure 33. Revised Turbine Shroud Design
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The final turbine shroud design presented a major challenge

for the fabrication technology of sintered alpha silicon carbide

components, especially in the beginning of the AGT program. The

selected forming approach of injection molding is capable of near net
shape fabrication. However, in early 1980 there was considerable risk

involved, because, at that time, components of this large a size and
mass had not yet been fabricated using the injection molding process.

Design discussions on the injection molding tool were
initiated with an outside mold maker in June 1980. The tool was

designed to mold a near net shape component with excess stock for

final grinding in tight tolerance areas. The tool was completed in

September and a wax replica of the cavity was supplied by the vendor
for approval. The component passed evaluation and the tool was

shipped to an outside molding facility. Problems with the mixing and

compounding equipment caused delays in the preparation of several

hundred pounds of plasticized compound and the first molding trial had
to be postponed until January of 1981.

The initial molding trials were conducted using a
microprocessor-equipped 300 ton Reed RS machine. The volume of the

molded shroud was estimated at approximately 150 cubic inches which

was greater than the single shot size available on this machine.

Therefore, a flow molding sequence through the microprocessor control
system had to be used to deliver sufficient volume of material to the

shroud cavity. The flow molding operation consisted of partially

filling the mold by extrusion and screw rotation for a predetermined
length of time. The forward motion of the screw was then used to

complete filling and provide final compaction.

Machine settings were determined to produce completely
filled parts. Four of these parts were judged suitable for further

processing. However, the mold filling pattern could not be optimized

during the molding trial. The shrouds contained many flow and weld
lines, which were the result of improper fusing of compound injected

under pressure caused by the delay in the injection stroke. The delay
between flow and packing allowed the injected material to cooi which

prevented subsequent fusing. Three of four parts were baked
successfully with no visible cracks present. After sintering, cracks
developed along the flow or knit lines.

In response, the tool was returned to the machine shop where

the sprue and diaphragm gate were enlarged in order to facilitate an
improved flow pattern with fewer and less pronounced flow lines.

A second molding trial was carried out in April with the
reworked tool using the flow molding technique. A total of 13

individual moldings were carried out under a variety of conditions.
The slow fill obtained by flow molding showed some improvements due to

the tooling modifications, however, a high incidence of weld lines was

observed which posed problems in subsequent processing steps. The
best two shrouds were processed in an attempt to learn the special

handling techniques required for a part of this size. Both components

developed several cracks on pronounced flow lines.

47



At this point the flow molding process was abandonedin
favor of single shot injection molding using a sufficiently large
machine at a custom injection molding facility. Conventional

injection molding machines of at least 800 ton clamping pressure and

145 ounce shot size (based on polystyrene with 1 ounce equivalent to
26.5 cm_) were considered suitable.

Approximately 700 pounds of molding compound were prepared

in the June/July 1981 timeframe. The compound was delivered to the
custom molder for injection molding trials in July on a 1000 ton, 165

ounce reciprocating screw machine equipped with microprocessor
controls.

A total of 48 turbine shrouds were molded using a variety of
conditions. The machine adjustments were made utilizing personnel

from the custom molding facility skilled in molding plastics and

highly familiar with the behavior of the individual machine, as well
as our own technical personnel familiar with the behavior of plastic

filled alpha silicon carbide compound.

All parts were visually better than those produced using the

flow molding technique. Closer inspection showed that minor linear

indications were still present on the surface of some parts. It was
thought that these indications could be eliminated by further

enlarging the gate and adding vents at the parting line at the shroud
rim. Additional tool modifications were postponed until some of the

turbine shrouds were processed through sintering to better assess the
actual shrink factors.

Two shrouds were successfully baked in August and one was

sintered (Figure 34) without any of the cracks typically observed on

the components made with the flow molding process. To assess the true
shrinkage behavior without introducing interference, it was decided to

sinter this unit without any high temperature fixtures which resulted,

as expected, in some distortion on the flange.

Two additional shrouds were sintered in September. After
measurements were taken, one was delivered to GAPD for evaluation.

The second shroud was approximately 0.100" smaller in diameter than

the previous two units. Further evaluation of the processing history

showed that a different set of molding conditions was used which had

resulted in a part weighing 0.5 Ibs less and having a lower green

density. Densification during sintering, however, reached about the
same level as for the other turbine shrouds. Thus, the reduced green

density caused an increase in final shrinkage producing a smaller

part.

Another two shrouds were sintered in October of 1981 without

the benefit of fixturing in order to calculate the dimensional changes

required for tool rework.
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F i g u r e  34. S i n t e r e d  Turb ine Shroud 

The above f i v e  t u r b i n e  shrouds were s i n t e r e d  i n  a r e s i s t a n c e  
heated fu rnace  and some o f  t he  observed f l a n g e  d i s t o r t i o n  was 
a t t r i b u t e d  t o  t h e  c loseness o f  t h e  h e a t i n g  elements. To f u r t h e r  
assess shr inkage behav io r  d u r i n g  s i n t e r i n g ,  a s i n t e r i n g  t r i a l  was 
conducted i n  a l a r g e  i n d u c t i o n  furnace which can h o l d  components o f  up 
t o  22" d iamete r  u s i n g  a t r a d i t i o n a l  t h r e e  column s e t t e r  arrangement. 
No change i n  shr inkage behav io r  was observed when comparing p a r t s  f rom 
b o t h  s i n t e r i n g  furnaces. Dimensional da ta  w e r e  taken on t h e  s i x  
s i n t e r e d  components and s h r i n k  f a c t o r s  were c a l c u l a t e d  f o r  t o o l  
modi f i c a t i o n .  

A new drawing (3846212) r e f l e c t i n g  a r e v i s e d  f l a n g e  des ign 
was rece ived  d u r i n g  t h e  f o u r t h  q u a r t e r  o f  1981. The new des ign  showed 
t h r e e  l o c a t i n g  pads versus t h e  n i n e  pads on a s o l i d  f l a n g e  o f  t h e  
p rev ious  design. The t o o l  rework was completed l a t e  1981 and a 
mold ing t r i a l  was c a r r i e d  o u t  d u r i n g  January o f  1982 u s i n g  t h e  same 
1000 t o n  mo ld ing  machine as f o r  t h e  p rev ious  mold ing run. 
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A t o t a l  o f  43 shrouds w e r e  produced us ing  t w o  composi t ions 
v a r y i n g  i n  s h r i n k  f a c t o r .  
t o  each composi t ion.  
seve re l y  d u r i n g  bak ing f o r  undetermined reasons s ince  t h e  bak ing  
procedure was i d e n t i c a l  t o  t h a t  used f o r  t h e  o l d  design. Four more 
p ieces were baked and t h r e e  p a r t s  showed cracks which o r i g i n a t e d  i n  
t h e  p o s i t i o n i n g  s l o t s  on t h e  f l a n g e  i n  t h e  t u r b i n e  shroud/outer  
d i f f u s e r  i n t e r f a c e .  The f o u r t h  component which d i d  n o t  e x h i b i t  any 
cracks i n  t h i s  r e g i o n  a f t e r  bak ing was s i n t e r e d  and subsequent ly 
showed a l s o  cracks i n  t h i s  r e g i o n  ( F i g u r e  35).  P r i o r  t o  bak ing  
a d d i t i o n a l  shrouds, a generous f i l l e t  r a d i u s  was a p p l i e d  t o  t h e  s l o t  
d e t a i l  on t h e  f l a n g e  t o  min imize s t r e s s  concen t ra t i ons .  The f i r s t  
crack f r e e  s i n t e r e d  shroud (F igu re  36) hav ing t h e  r e v i s e d  des ign  was 
produced i n  March o f  1982, p r o v i n g  t h e  t h e o r y  o f  a sharp co rne r  as a 
severe s t r e s s  r i s e r  as c o r r e c t .  

A m a t r i x  o f  mold ing c o n d i t i o n s  was a p p l i e d  
The f i r s t  shroud s e l e c t e d  f o r  process ing cracked 

I 

F i g u r e  35. S l o t  D e t a i l  on Turb ine Shroud Flange 
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F i g u r e  36. S i n t e r e d  Turb ine Shroud w i t h  3 - S l o t  Flange Design 

Fo r  f u t u r e  mold ings i t  was t h e r e f o r e  planned t o  e i t h e r  mold 
i n  a generous r a d i u s  on t h e  p o s i t i o n i n g  s l o t s  o r  t o  comp le te l y  
e l i m i n a t e  t h i s  f l a n g e  d e t a i l  d u r i n g  mold ing and i n c o r p o r a t e  i t  d u r i n g  
f i n a l  g r i n d i n g .  

S i n t e r i n g  o f  t h e  t u r b i n e  shrouds w i t h  generous f i l l e t  r a d i i  
was c a r r i e d  o u t  on g r a p h i t e  r o l l e r s  t o  min imize f r i c t i o n a l  drag. 
However, f l a t n e s s  on t h e  face o f  t h e  f l a n g e  cont inued t o  be a problem 
and a s tudy  t o  determine t h e  cause o f  t h i s  d i s t o r t i o n  was i n i t i a t e d .  
M ic roscop ic  examinat ion o f  r a d i a l l y  s l i c e d  samples, 4 microns t h i c k ,  
taken f rom a molded p a r t ,  d i d  n o t  d e t e c t  s i g n i f i c a n t  pack ing d e n s i t y  
d i f f e r e n c e s .  I n  a d d i t i o n ,  green d e n s i t y  measurements taken i n  t h e  
same area i n d i c a t e d  no d i f f e r e n c e s .  Two approaches f o r  c o r r e c t i n g  t h e  
f l a n g e  d i s t o r t i o n  were then suggested: 

1. Removal o f  f l a n g e  s e c t i o n s  between t h e  mount ing l o c a t i o n s  o r  tabs 
t o  show i f  c i r c u m f e r e n t i a  shr inkage i s  d i f f e r e n t  f r o m  r a d i a l  
shr inkage o r  i f  t h e  r a d i a  shr inkage d i f f e r s  depending on i t s  
c i  rcumf e r e n t  i a1 1 oca t  i on. 
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. Deliberate distortion of the flange in the opposite direction
while in the molded state, to be accomplished by applying

pressure to the flange while the freshly molded part is still

warm and pliable.

A total of four shrouds were green machined in April of 1982
to remove flange sections between the mounting locations (Approach 1).

The expected benefit on the sintered components was not achieved as

the mounting flange sections showed about the same degree of
deflection as on the parts with full flange.

One of the above shrouds (2-101) was shipped to GAPD in

May for evaluation. One of the remaining modified shrouds was refired

using a hot pressing procedure in an attempt to straighten the tabs.

A noticeable improvement was noted on two tabs while the third

remained essentially unchanged. Subsequently, the remaining two
shrouds (16-I and 16-3) having some flange distortion were shipped to

GAPD the following month.

Turbine shroud 16-3 was thermally screened a_ GAPD. It
successfully passed light off cycles from 1200 to 160R F. However,
the part fractured during heat up from 1600VF to 1800VF. The fracture
originated at an internal void. Pictures taken from fracture surfaces

(Figures 37, 38) indicated also severe exaggerated grain growth.

A set of trials to reduce flange distortion using Approach 2
was conducted in the May/June timeframe. Steel fixtures to aid warm

deformation of the shroud flange were obtained.

The injection molding tool was changed to eliminate the
three slots on the flange and a new molding trial was conducted. A

total of 53 shrouds were molded using two compositions. Attempts to

purposely distort the flange at the molding site were unsuccessful.
The parts were apparently too cool to respond to pressure, even

directly out of the tool. A more successful technique was developed

by placing a shroud with the steel fixture and a suitable weight on

the flange into an oven for several hours near the injection molding
temperature. The flange showed distortion conforming to the fixtures

upon completion of this trial. However, after sintering it was noted

that the same amount of flange distortion occurred indicating that the
stresses developed during molding or the material characteristics

producing distortion were not eliminated.

Flange distortion caused by heat gradients during sintering

was investigated as another alternative cause. Individual graphite

crucibles were fabricated for sintering purposes and it was attempted

to insulate the components in such a way so as to minimize any heat

gradients. This method showed promise but did not completely correct
the distortion problem.

In parallel to the efforts on reducing flange warpage, work

was initiated in April on the design and fabrication of grinding

fixtures. Grinding and ultrasonic cutting of the first turbine shroud

(Figure 39) was completed in July. Some areas of the shroud
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f l a n g e  face  had i n s u f f i c i e n t  s tock  and d i d  n o t  c lean  up, however, 
because o f  t h e  v e r y  l o c a l i z e d  and shal low unground areas i t  was n o t  
p r o j e c t e d  t o  cause problems i n  e v a l u a t i o n  and r i g  t e s t i n g .  

F i g u r e  37. F r a c t u r e  Surface 

F i g u r e  38. Exaggerated Gra in  Growth on F r a c t u r e  Sur face 
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F i g u r e  39. Ground Turb ine Shroud 

Work con t inued  on t h e  development o f  severa l  s i n t e r i n g  
f i x t u r e s  i n  an e f f o r t  t o  g a i n  c o n t r o l  over  t h e  d i s t o r t i o n  
p redominan t l y  observable on t h e  f l ange .  An a l t e r n a t i v e  r o u t e  o f  u s i n q  
f i x t u r e s  d u r j n g  a second s i n  
d u r i n g  t h e  i n i t i a l  s i n t e r i n g  

Tu rb ine  shrouds mo 
processed through t h e  system 
components t o  assess t h e  i n f  
approaches. 

The p o s t - s i n t e r i n g  

e r i n g  s tep  t o  reduce warpage ob ta ined  
s tep  was a l s o  pursued. 

- 

ded d u r i n g  t h e  MaylJune t r i a l s  w e r e  
and da ta  were c o l l e c t e d  on i n d i v i d u a l  
uence o f  t h e  v a r i o u s  f i x t u r i n g  

f i x t u r e s  f o r  c o r r e c t i n g  f l a n g e  d i s t o r t i o n  
w e r e  designed and f a b r i c a t i o n  was completed i n  August. T e s t i n g  was 
conducted on t h r e e  s i n t e r e d  shrouds w i t h  mixed r e s u l t s .  The f i r s t  two 
t r i a l s  r e s u l t e d  i n  severe shroud c r a c k i n g  w i t h  l i t t l e  o r  no 
s t r a i g h t e n i n g  o f  t h e  f l ange .  Subsequently, t h e  f i x t u r i n g  
c o n f i g u r a t i o n  was a l t e r e d  f o r  t he  t h i r d  run which r e s u l t e d  i n  v i s i b l e  
improvements. The shroud f rom t h i s  run  e x h i b i t e d  a f u l l  f l a t t e n e d  
f lange,  however, t h e  minor  cracks t h a t  were de tec ted  i n  t h i s  p a r t  
p r i o r  t o  t h e  t e s t  had grown i n  s e v e r i t y .  
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A comparison of results of the post-sintering procedures for
straightening flange warpage showed that even though some warpage
reduction could be determined the introduction of cracks could not be
eliminated. Work on this development task was terminated in October
of 1982.

Four additional shrouds were sintered in November of 1982.

Evaluation of these parts showed that most of the dimensions were

slightly oversized, however, densities were acceptable. All four
parts exhibited minor flange warpage. Two of these parts exhibited no

detectable linear flaws and were submitted for final grinding.

Dimensional evaluation of all sintered shrouds indicated

that in general a lower shrinkage factor was observed than initially
planned for. The injection molding tool was therefore modified to

produce grinding stock in critical areas and a new molding trial was
conducted late that month. Twenty-eight shrouds were molded using two

different compositions. Detailed visual inspection of these parts

showed that sixteen were of better molding quality than the remaining
parts.

In December of 1982 GAPD advised they were considering
several design changes to reduce thermal and mechanical stresses for

SASC. Therefore, parts in the processing system were completed and
the molding of additional shrouds was suspended pending the results of

the redesign.

Two turbine shrouds completed grinding early in 1983. One

component was rejected because of a crack discovered on the ground

flange close to the I.D. The second component (80-8) was NDE
acceptable and was shipped to GAPD in February. Three additional

components completed grinding. Only one of these (105) passed NDE and

was submitted to GAPD for evaluation and testing in April. The
unit was tested at GAPD but an operational error resulted in

fracture of the part.

The new drawing (PA3609679) for the modified scalloped
design (Figure 40) was obtained in June and the remaining parts in the
system were sintered and evaluated. It was concluded that the former

design yielded insufficient stock in the vicinity of the reinforced
rotor contour and all remaining parts of the old design were
discarded.

Design considerations for a new injection molding and/or

transfer molding tool were subsequently initiated but actual

fabrication was put on hold until October of that year. At that time

it was decided to not invest in a new injection molding tool but
revise the old tool and remove steel where additional stock is

required (Figure 41). Excess stock was also added in the flange area

to allow for some warpage. In addition green machining was employed

to remove details from the molded components to meet new print
requirements.
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Figure 40. Scalloped Turbine Shroud Design
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Figure 41. Injection Molding Tool
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The tool revision was completed in November and a molding
run in December yielded a total of 29 components. All parts showed
some flow lines, most of these, however, were in areas where stock was

to be removed during green machining. Nine shrouds were green
machined in the as-molded state and submitted for initial NDE

inspection. X-ray evaluation of the green machined parts revealed
plastic and metal contamination. Burn-out of these foreign materials,

depending on the location, would lead to pores or blow-outs in the
sintered parts. It was decided to use these green parts only for

fixturing trials and to schedule a new molding run.

The new molding trial was carried out in March of 1983 and

yielded 45 components. Particular attention was placed on the
preparation of the molding machine at the custom molder to reduce the

possibility of contamination originating from plastic (previous

molding material on the machine) or metal (possibly used to clean up
sections of the machine).

Components of the last two molding trials having the most
recent design with three locating tabs instead of a full flange were

processed to develop a better understanding about the fixtures
required during sintering to minimize tab warpage. Two parts from the
December molding were sintered in March. Both parts were out-of-round

with the three massive locating tabs seemingly acting to restrict

radial shrinkage. Another three parts were sintered in April using
different fixturing techniques in order to better control flange or

tab distortion. In addition, an isopressed blank was cut into plates
for the shroud to rest on. The shrinkages of both materials were

matched and the plates and the tabs of the turbine shroud were pinned

together in an attempt to force the shroud to shrink with the plates.
In this way both out-of-roundness and flange distortion were reduced.

A total of three parts were sintered in April of 1984 using
slightly modified fixturing techniques. One part without visual

defects was submitted for as-fired X-ray and FPI inspection. The

dimensional inspection showed good agreement with the print and
sufficient stock in areas intended to be ground with the exception of

the diameter in the turbine shroud/outer diffuser interface, where a

slightly oversized inner diameter was observed.

Development work continued to address various fixturing

techniques to reduce tab warpage, I.D. out-of-roundness and cracking

which appeared to be caused by excessive force on the tabs. By
September two components had passed X-ray and FPI inspection.

Warpage on the tabs was minimized and sufficient stock on the I.D. of

the turbine shroud/outer diffuser interface was present. Both

components were considered grinding candidates. Figure 42 shows
turbine shrouds of the new scalloped design in the as molded state and

after sintering where approximately 20% of shrinkage is observed.
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F i g u r e  42.  Scal loped Turb ine  Shroud 
Green ( l e f t ) ,  S i n t e r e d  ( r i g h t )  

GAPD had conducted a d d i t i o n a l  s t r e s s  analyses on t h e  most 
recen t  des ign  o f  t h e  t u r b i n e  shroud us ing  a lpha s i l i c o n  ca rb ide  
gener i c  performance c h a r a c t e r i s t i c s .  I t  was determined t h a t  even t h e  
redesigned fo rm o f  t h e  t u r b i n e  shroud s t i l l  e x h i b i t e d  t o o  h i g h  a 
s t r e s s  f o r  success fu l  complet ion o f  t h e  des i red  t e s t  program. 
Subsequently a l l  work was d i scon t inued  a f t e r  October 1984. 
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4.2.6 Turbine Stator

Both a segmented and an integral design (Figure 43 and 44)

were initially considered for the stator section of the engine. For
aerodynamic efficiency, the airfoil shape contains both convex and
concave contours. In order to fabricate a functional injection

molding tool to produce the integral stator, concessions on the

airfoil contours would have been required. Aerodynamically, these
concessions were undesirable and not allowed. Therefore, it was

recommended to pursue the segmented approach which will produce the
preferred airfoil shape. A single cavity tool was designed and

ordered in May of 1980.
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Figure 43. Integral Stator Design
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Figure 44. Individual Stator Segment Design

A wax replica of the stator segments formed in this

injection molding tool was obtained in September. Inspection of the
molded piece revealed the incorrect location of the gate on the

leading edge of the vane. The gate location was changed to the more
massive upper platform with an option to relocate at a later date.

Initial molding trials were conducted during the same month

using an experimental molding compound. The filling pattern was

satisfactory and the segments were processed through sintering. Low
density and some distortion on the inner shroud were experienced.

A matrix of molding variables was selected and 20 segments

were produced from each set of conditions. All molded parts were
visually acceptable. However, after baking one group had a 60% yield,

a second group had 10% and the remaining two groups had all defective

segments. The predominant defects were small cracks in the gate

region on the upper platform. Crackfr_e vane segments were sintered
(Figure 45) and a density of 3.14 g/cm was achieved. All parts

exhibited some platform distortion. Simple fixturing techniques using
plates or pins were not effective.

Development activities during the first half of 1981

focussed on designing, building, and evaluating support fixtures to
prevent platform distortion during sintering. Six different sintering
fixtures were evaluated. The most effective method was a reusable

fixture which employed a fixed spacer at the trailing edge of the

airfoil between the platform tips. The remaining five methods showed

inconsistent results and were largely ineffective in assuring the

parallelism of the platforms near the trailing edge.
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F i g u r e  45. S i n t e r e d  S t a t o r  Segments 

G r i n d i n g  f i x t u r e s  were designed and f a b r i c a t e d  i n  p a r a l l e l  
S i n t e r e d  s t a t o r  segments w e r e  used t o  t o  t h e  s i n t e r i n g  experiments. 

f i n a l i z e  t h e  g r i n d i n g  f i x t u r e s  and assure p roper  set-up d u r i n g  
g r i n d i n g .  The f i r s t  g r i n d i n g  t r i a l  comnenced i n  June o f  1981. 
However, i n s u f f i c i e n t  s tock  was present  t o  f i n i s h  t h e  components t o  
p r i n t .  
p r o v i d e  an unders ized s t a t o r  u n i t  w i t h  c o r r e c t  i n t e r f a c i a l  t o l e r a n c e s  
t o  f u r t h e r  assess t h e  g r i n d i n g  c a p a b i l i t y ,  t h e  amount o f  g r i n d  s tock  
necessary, and shrinkage/warpage r e l a t e d  dimensional  d e v i a t i o n s .  Even 
though t h e  p l a t f o r m s  were sma l le r  than r e q u i r e d  f o r  f i n i s h  g r i n d i n g  i t  
was found t h a t  t h e  a i r f o i l  shape and s i z e  corresponded w e l l  w i t h  t h e  
drawing dimensions. F i g u r e  46 shows an as f i r e d  and a ground s t a t o r  
segment f o r  comparison. 

A second s e t  o f  s t a t o r  segments was complete ly  ground t o  

Composi t ional  adjustments t o  p r o v i d e  p l a t f o r m s  w i t h  a 
minimum o f  .O10l1 g r i n d i n g  s tock  r e s u l t e d  i n  a i r f o i l s  whose chord 
l e n g t h s  were approx ima te l y  .0501' l onger  than p r i n t  s p e c i f i c a t i o n s ,  
i n d i c a t i n g  a n i s o t r o p i c  shr inkage d u r i n g  s i n t e r i n g .  
has a l s o  been observed on o t h e r  complex i n j e c t i o n  molded shapes and i s  
a t t r i b u t e d  t o  a v a r i a t i o n  i n  pack ing and green d e n s i t y .  

S i m i l a r  behav io r  

Consequently, i t  was decided t o  rework t h e  t o o l .  An a i r  
ven t  i n  t h e  t r a i l i n g  edge r e g i o n  was added t o  e l i m i n a t e  f l a w s  i n  t h a t  
r e g i o n  and t h e  shroud p l a t f o r m s  w e r e  en larged t o  p r o v i d e  t h e  necessary 
g r i n d i n g  s tock  w h i l e  us ing  s tandard i n j e c t i o n  mold ing compound. 
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F i g u r e  46.  S t a t o r  Segments, A s  F i r e d  and Ground 

Mold ing a c t i v i t i e s  w e r e  resumed i n  December and 
approx ima te l y  200 s t a t o r  segments w e r e  produced. A i r f o i l  contours and 
dimensions were v e r i f i e d  on t h e  s i n t e r e d  segments and o v e r a l l  p l a t f o r m  
dimensions were found t o  be adequate f o r  g r i n d i n g .  However, v i s u a l  
and dye p e n e t r a n t  i n s p e c t i o n  revealed su r face  i m p e r f e c t i o n s  i n  t h e  
t r a i l i n g  edge r e g i o n  on approx imate ly  50 percent  o f  t h e  segments. A i r  
vents  were subsequent ly en larged on t h e  mold and an a d d i t i o n a l  250 
segments were molded. These components w e r e  processed through 
s i n t e r i n g  d u r i n g  t h e  f i r s t  q u a r t e r  o f  1982. 

I n  February a group o f  30 segments was d e l i v e r e d  t o  t h e  
g r i n d i n g  vendor where a p r e c i s e  g r i n d i n g  and f i x t u r i n g  procedure was 
e s t a b l i s h e d  w i t h  s u b s t a n t i a l  i n p u t  f rom Standard O i l ' s  development 
group. Four  segments were used t o  work o u t  t h e  procedure. 

F i n i s h  g r i n d i n g  was completed on t h e  f i r s t  o f  t h r e e  s e t s  o f  
segments (19 i n d i v i d u a l  s t a t o r  segments p e r  s t a t o r  and one spare) .  To 
Verify t h e  O.D./I.D. dimensions as an assembly, a s i z i n g  f i x t u r e  was 
produced and d i m e n s i o n a l l y  c e r t i f i e d .  I d e n t i c a l  f i x t u r e s  were 
f a b r i c a t e d  f o r  t h e  g r i n d i n g  f a c i l i t y ,  as w e l l  as Standard O i l ' s  and 
GAPD's Q u a l i t y  Con t ro l .  
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The first set fit the fixture with less than .0015" total
gap in the assembly. Reviewof this information with GAPDand further
clarification of the drawing revealed that a .020" gap is necessary in
the assembly to accommodatecircumferential growth during heat-up to
engine operating temperatures. The first set was reworked by removing
an additional .005" from each side of the contact faces. After
annealing and inspection this first set of ground stator segmentswas
delivered to GAPDin April of 1982. A second set was provided during
the following month. A minor grinding changewas incorporated in the
next two sets to be ground. The radius at the intersection of the
O.D. arc and the flat of the shroud platform was increased.

During the second half of 1982 development work addressed
grinding of individual stators. It was noted that several components
had grinding induced flaws. Most of these componentscould be
reworked to eliminate chips and small cracks through hand blending.
The grinding procedure and execution at the grinding vendor were
reevaluated to minimize rejects and improve the quality and also the

yield of finish ground components. All potentially usable parts in

inventory, ground as well as unground, were shipped to GAPD in October
1982 for evaluation, completing the project for FY 1982.

Work on this project was reinitiated at the beginning of FY

1983. An improved injection molding compound with a different plastic

system and a somewhat higher plastic content was used to make stator

segments in the mold designed for the previously employed system which
exhibited a 17% shrink factor.

The new compound (B) is superior to the old one (A) by

producing parts with less molding defects or flow lines. Parts made

of compound B also exhibit less sintering distortion. A set of

parameters was investigated to alter and sufficiently influence
shrinkage during sintering to obtain parts to print.

The initial molding trial with the new compound (B)

conducted in January yielded components which were substantially
undersized. Various molding compounds (B., B_, B_) with decreased

plastics content to reduce overall shrinkage _ereJsubsequently

investigated.

Several groups of stator segments were molded during the

first half of that year. All compounds derived from the B composition

yielded visually excellent molded parts without apparent flow lines or
excessive flaws in contrast to a control group of segments from

composition A which showed some unfilled areas and also some flow
lines. At that time 20 plastic stator segments were also molded to

verify the consistency of the mold dimensions and to check

specifically the vane shape, vane length, and the profile of the
sidewalls. Inspection indicated extremely good agreement with drawing

dimensions.

64



Various sintering schedules were investigated using stator
segmentsof the Bp composition to determine the exact relationship
between sintering'temperature, density and dimensional tolerances. A
matrix approach was used in determining the sintering temperature
which would yield the best dimensions in connection with an acceptable
final density. Six stator segmentswere used for each experiment
which involved three temperature levels: T1, Tp, TR, and two
compositions: Bp and BR. It was concluded tha_ B3Vat T2 and B2 at T3
gave the best results.

Evaluation of the stator segmentsmadefrom the B compound
versus the modified compoundsBp and BRindicated superior quality
parts from the former. SubsequEntly i_ was decided to design a new
mold with increased shrink factors.

CompoundB was used for molding 250 stator segments. All
parts were processed under standard procedures and conditions and some
of these parts were used to determine mold dimensions for a new
injection molding tool. The remaining parts were utilized for
fixturing experiments during sintering. Warpageof the sidewalls,
flaring at the ends and somedistortion in the trailing edge
necessitated additional design work on the sintering fixtures. A
configuration was developed which was successful in minimizing these
deviations.

The newmolding tool (Figure 47) was received late 1983and
400 stator segmentswere molded in January of 1984. A total of 190
parts were processed through sintering. All parts had good densities
and showedgood dimensional stability but exhibited sharp filet radii
and a thin trailing edge. GAPDreceived three as sintered stator
segments and verified the deviations.

The molding tool was reworked and two groups of stator
segmentswere molded consisting of 300 parts of compoundB and 400
parts of compoundC. Latter varies from compoundB only in the
particle size distribution of the submicron alpha SiC powderwhich
results in slightly reduced shrinkage as experienced on isostatically

pressed shapes. However, processing either one of the SiC injection
molding compounds exhibited essentially the same shrinkage
characteristics.

All parts had good densities and shape integrity but
exhibited vane profiles which were too short and thin on the trailing

edge. Consequently, the injection molding tool was sent out for a

second rework in the trailing edge.

The tool was returned in July of 1984 and a large molding

trial was conducted. The parts were processed using standard
conditions. Virtually no parts were rejected due to X-ray flaws.

Some visual defects on the trailing edge were removed through minor

touch-up grinding. The good correspondence of the vane profile with

the print was verified by both GAPD as well as Standard 0il.
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F i g u r e  47. I n j e c t i o n  Mold ing T o o l  



Four s e t s  o f  as f i r e d  s t a t o r  segments (F igu re  48) w e r e  
shipped t o  GAPD i n  September, two se ts  i n  November and t h e  remain ing 
seventh s e t  i n  December t o  complete 1984 d e l i v e r y  requirements.  Work 
f o r  FY 1985 was scaled down s u b s t a n t i a l l y ,  one smal l  mo ld ing  t r i a l  and 
severa l  f i x t u r i n g  exper iments were conducted t o  o b t a i n  b e t t e r  c o n t r o l  
over  t h e  p l a t f o r m  d i s t o r t i o n  near t h e  l ead ing  edge as d e p i c t e d  i n  
F i g u r e  49 which shows t h e  p l a t f o r m s  oppos i te  t h e  gates bending inward. 
New f i x t u r e s  were designed and f a b r i c a t e d .  However, no s u b s t a n t i a l  
improvement cou ld  be observed. A t  t h a t  p o i n t  i t  was f e l t  t h a t  a 
change i n  g a t i n g  and maybe some i n t e g r a l l y  molded f i x t u r e s  would 
r e s o l v e  these d i f f i c u l t i e s .  

F i g u r e  48. As F i r e d  S t a t o r  S e t  

T e s t i n g  a t  GAPD d u r i n g  t h e  f i r s t  h a l f  o f  1985 revea led  
f requen t  c r a c k i n g  o f  segments i n  t h e  cen te r  o f  t h e  t r a i l i n g  edge. 
Subsequent d e t a i l e d  s t r e s s  analyses i n d i c a t e d  t h a t  s t resses  o f  up t o  
44 k s i  can be p resen t  i n  t h e  t r a i l i n g  edge depending on t e s t  sequence. 
These s t resses  c o u l d  be reduced by c u t t i n g  back t h e  t r a i l i n g  edge, as 
shown i n  F i g u r e  50. A s e t  o f  s t a t o r  segments was m o d i f i e d  a c c o r d i n g l y  
and passed thermal screening. However, t h i s  m o d i f i c a t i o n  r e s u l t s  i n  
reduced engine performance. I t  was t h e r e f o r e  dec ided t o  conclude t h i s  
development p r o j e c t  and n o t  t o  i n v e s t  i n  a d d i t i o n a l  t o o l i n g  rework. 
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4.2.7 Regenerator Shield

Design discussions on the regenerator shield (Figure

51) were initiated in January of 1980 with Drawing L3646114.
Initially it was suggested to produce this component by slip casting,

followed by green machining of the I.D. taper and some final grinding
after sintering. However, it was decided to use isopressing and green

machining instead to obtain components for testing.

6.193

--5.68

n

4.540

I'

5 84 ""-

Figure 51. Initial Regenerator Shield Design

Isopressing and green machining of tube stock has been a

standard fabrication method used routinely for high performance
ceramics and development work was only required for exact shrink

factor determination and fixturing during sintering to reduce grinding
time/cost or completely eliminate grinding in certain areas such as
the I.D.

Fabrication of isopressed billets was started in July. Five
components completed sintering and as fired inspection during the 3rd.

Quarter of 1980 and were submitted for grinding to an outside vendor.

Fixturing and grinding methodology difficulties on this relatively

large component delayed the actual completion of these first
deliverables. Additional five components were processed through as
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fired NDE, dimensional inspection and submitted for final grinding

during the 4th Quarter. A total of nine ground components were
delivered in February of 1981 completing the delivery requirements for
the 1980/1981AGT 101 schedule.

Development work was reinitiated on a modified design

(Drawing 3846154) in May of 1983. Figure 52 depicts overall
characteristics of this new design.
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Figure 52. Modified Regenerator Shield Design

Extrusion was chosen as a viable fabrication method which

would reduce material cost significantly because of increased material

yield. Additionally, this method is capable of producing large
quantities of the basic tubular shape very cost effectively with

little manual labor necessary.

The relative large diameter required on the green shape,

approximately 7.75" (197 mm), and the extrusion compound available at

that time, determined that plastic extrusion should be developed

instead of aqueous extrusion. Plastic extrusion has higher green

strength which aids in handling and reduces green losses. However, it
requires an additional binder removal step which is very critical for

the quality of the sintered component.
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Initial shrink factor determination on plastic extrusion mix
was conducted during Mayand an extrusion die was designed in
cooperation with an outside extrusion vendor. Difficulties were
experienced in first scheduling an extrusion trial at the outside
vendor site and second in having the proper take-up equipment in
place.

The first extrusion trial conducted in October was
unsuccessful becauseof insufficient pressure to fill the large
diameter die. A second trial on a larger extruder during the
following month proved to be successful. Tube stock to yield 26
individual thick walled liners was produced. Four sections were cut
to size, visually examined, dimensionally checked, and placed into
binder removal.

The first extruded regenerator shield blank was sintered in
Decemberof 1983. Subsequently it was ground and submitted for final
inspection. It was found that insufficient stock was present due to
out-of-roundness, thus, dimensional requirements were not met. In
addition, subsurface flaws were exposedduring grinding.

Processing experiments were conducted on several of the
remaining cut-to-length sections. Each of the parts showedblow outs
or cracks. Reevaluation of the extruded green stock using X-ray
microfocus examination indicated that internal voids and
inhomogeneities were present throughout the whole charge.
Subsequently, a reassessment of this development programwas conducted
in light of the funds available and the delivery requirements. In
February of 1984 it was decided to terminate this aspect of the
program and place increased emphasison supplying ground regenerator
shields madeby isopressing and green machining.

Parallel processing had been initiated in Septemberof 1983
after scheduling problems with the large extruder were experienced.
Two units were isopressed and processed through as-fired NDE. These
parts were submitted for grinding as it becameapparent that the
extruded tube stock would not yield engine quality components.

Oneground component(3-101), as shownin Figure 53,
supplied in Decemberwas followed by a second unit (4-101) in January.
Staying with this proven prototype fabrication technique two
additional units (4-102 and 4-103) were supplied in March followed by
a single shipment (4-104) in June which completed the FY 1984
requirements.

Activities on this program task were reinitiated in November
of 1984 to meet FY 1985 delivery requirements of componentsthroughout
the year. Workaddressed precise shrinkage determination on a
specified lot of alpha silicon carbide to minimize final grinding cost
through the elimination of I.D. grinding on the straight section.
Greenmachining of the I.D. radius proved to be unsuccessful because
of the close tolerances required and subsequent alignment and set-up
problems during final grinding.
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F i g u r e  53. F i n i s h  Ground Regenerator S h i e l d  

S i x  preforms were isopressed i n  January o f  1985 and 
shr inkage d e t e r m i n a t i o n  was conducted on one tube b lank.  The s h r i n k  
f a c t o r s  used f o r  c a l c u l a t i n g  green dimensions were a d j u s t e d  
a c c o r d i n g l y  and f o u r  u n i t s  were processed through s i n t e r i n g .  A l l  
u n i t s  were ground a f t e r  pass ing NDE and dimensional  e v a l u a t i o n .  Two 
ground, annealed regenera to r  s h i e l d s  (5-105 and 5-106) were shipped i n  
February and two a d d i t i o n a l  p a r t s  (5-107 and 5-108) i n  March. 

A r e v i s e d  drawing (3846154-A), as i l l u s t r a t e d  i n  F i g .  
54, was ob ta ined  d u r i n g  t h e  f o l l o w i n g  month. P a r t i a l l y  processed 
regenera to r  s h i e l d s  were evaluated i f  they  cou ld  be reworked t o  m e e t  
t h e  new more s t r i n g e n t  requirements on one o f  t h e  O.D. bands. 
G r i n d i n g  d i f f i c u l t i e s  were exper ienced on t h e  f i r s t  p a r t  t o  be 
machined acco rd ing  t o  t h e  new drawing. The component was machined 
unders ize.  

New preforms were isopressed and processed. Two regenera to r  
s h i e l d s  (5-109 and 5-110) completed process ing through g r i n d i n g ,  f i n a l  
NDE and dimensional  e v a l u a t i o n  and were shipped t o  GAPD i n  June o f  
1985. 

72 



Component fabrication from isopressing through sintering and
as fired inspection continued to follow routine procedures. Grinding
was accomplished by an outside vendor. A total of four finish ground
regenerator shields were supplied from September through November
completing FY 1985 requirements.
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Figure 54. Revised Regenerator Shield Design

Difficulties, however, were experienced in obtaining the
tight O.D. tolerances and closer inspection of the close tolerance
O.D. band indicated some additional grinding related irregularities.
Evaluation of the ground O.D. dimensions using a Talyrond tracing
machine (Figure 55) was conducted. It was found that grinding
patterns similar to those shown in Figure 56 were present. The
grinding vendor was advised of the deviations and close interaction
with the grinding vendor resulted in marked improvements, as shown on
the Talyrond tracing in Figure 57.

After establishing shipping requirements for FY 1986 in late
1985, new preforms were pressed and processed according to the new

schedule. Due to malfunctioning of the grinding machine one part was

chipped and had to be rejected. This resulted in a delayed shipment

of the first two components. Four components (6-115 through 118) were

completed in March of 1986 and were shipped after they were subjected

to an annealing step.
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F i g u r e  55. Ta y rond  Trac ng Machine 

F i g u r e  56. Talyrond Trac ings o f  Unacceptable G r i n d i n g  P a t t e r n s  
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Figure 57. Tracing of an Acceptable O.D. Band

Drawing revision B (Figure 58) was obtained shortly

thereafter and three units which had been ground to revision A were

reworked accordingly. The best two components (6-119 and 6-120) were

shipped in May completing FY 1986 requirements. Figure 59 shows a
regenerator shield ground to drawing revision B.

Table ii summarizes the component shipment for the complete

program. Sintered alpha silicon carbide regenerator shields have
repeatedly performed well within the AGT-101 during mechanical

qualification and engine testing with no known failures.

Regenerator shield 103, for example, was tested in engines
at 2200°F and had accumulated almost 100 hours of testing prior to a

major engine failure where it was damaged with most of the ceramic

hardware. A sRcond regenerator shield (108) has been successfully
tested at 2100_F for over 100 hours.
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F i g u r e  58. Regenerator S h i e l d  Design - Rev is ion  B 

F i g u r e  59. Ground Regenerator S h i e l d  
(Rev is ion  B)  
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Table 11

Regenerator Shield - Component Deliveries

Dec.

Jan.

Feb.

March

April

May

June

July

Aug.

Sept.

Oct.

Nov.

FY

1980 1981 1982 1983 1984 1985 1986

2

2 2 4

2

I 2
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4.2.8 Combustor Liner

Work on the combustor liner, as shown in Figure 60, (Drawing

3830148) commenced mid 1982. The components were made of isopressed

green machined tube stock. After furnacing each component was ground
to dimensions.

Two material systems had been selected for this component:m

Hexoloy_SA, pressureless sintered alpha silicon carbide, and Hexoloy

KX-02, a silicon infiltrated silicon carbide material. Two ground
combustor liners from each material were supplied first in August and

then in October of 1982.

4.298

-" 7 000

3.928
-- 3.908

Figure 60. Combustor Liner Design

Development work on extruded and sintered silicon carbide
combustor liners was initiated in May of 1983 in parallel with the

extrusion development on the regenerator shield. The combustor liner

with its straight tube section is ideally suited for high volume/low

cost fabrication by extrusion.

Compound was prepared and tested for shrinkage and an
extrusion die was designed in cooperation with the extrusion vendor.

The first extrusion trial was carried out in July. Three 5 foot long

tube sections yielding 20 individual liners were successfully
extruded. Several liners were subjected to binder removal. The
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initial sintering test resulted in blow outs and warpage. The
fixturing method was revised and inside mandrels were used during the
following sintering trials. The observed warpagewas greatly reduced,
however, all parts from this first extrusion trial exhibited surface
flaws.

A second extrusion trial was conducted in September.
Additional stock on the O.D. and I.D. was incorporated in the die and

the extrusion machine variables were changed to eliminate surface

flaws. Initial visual inspection revealed no surface flaws were

present on this second group of liners. Still, sintered liners showed

a rough surface and blow outs. The remaining baked liners were

subjected to X-ray inspection to check for a possible contamination

problem. Most parts showed substantial metal contamination. Two
parts without metal contamination were sintered and submitted for

final grinding. The components did not clean up completely and voids

were uncovered during grinding.

Material from a third extrusion run under new extrusion

conditions, conducted in December of 1983, yielded tube stock for 26

individual liners. Several components were processed, however, none
of these were of engine quality.

Additional grind stock was incorporated in the die prior to

the fourth extrusion trial carried out in February. Four of these

components showed good dimensional control and material quality and
were sent after grinding and final NDE to GAPD during the second

quarter of 1984.

Subsequently, the direction of this development project was

reexamined. Based on schedule, financial impact and extrusion

progress it was decided to discontinue the extrusion development
effort and fulfill hardware requirements with isopressed/green
machined units.

Plastic extrusion was considered to require more extensive

development than the combustor liner project would warrant. In the
near term, especially with the use of an outside vendor and the
limited number of trials, it was felt that net shape of the O.D./I.D.

dimensions could not be achieved. Thus, extensive diamond grinding

would be necessary while no grinding is required in the case of
isopressed/green machined units. In addition, material quality of

plastic extruded material was inferior to isopressed material. Figure
61 shows a comparison of etched photomicrostructures at 200

magnification.

Due to the slow progress of plastic extrusion development

isopressing and green machining was initiated in March 1984. Work was
carried out in parallel for about four months, first to assure timely

hardware delivery and second to evaluate and finish extruded work in

process.
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Figure 61. Photomicrostructures of Sintered Silicon Carbide
Extruded (left), Isopressed (right)

Deliveries for FY 1984 consisted of four extruded (4-105
through 108) and six isopressed (4-101 through 104, 109 and 110) and
green machined combustor liners delivered from April through July.
The latter liner (Figure 62) required no grinding after the initial
shrink factor determination was completed.

Work resumedin Decemberof 1984with isopressing/green
machining as the selected fabrication method. Eight units (5-111
through 118) meeting drawing specifications in the as fired state
without additional grinding were delivered in regular intervals
betweenFebruary and August.

Twonew designs (Drawings PAP254020and PAP255863)were
received in October. These componentshad the general tubular shape,
however, varied in diameters and length from the originally delivered
combustor liners. A total of nine liners (5-119 through 127) were
delivered in October and Novemberof 1985.
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F i g u r e  62. S i n t e r e d  Combustor L i n e r  

The p l a n  f o r  FY 1986 c a l l e d  f o r  t e n  d e l i v e r a b l e s  p e r  drawing 
PAP254020. The f i r s t  two shipments cons is ted  o f  two l i n e r s  each 
(6-128 through 131) i n  January and March. 

A new drawing (PA3611755) was rece ived  i n  March. The m a j o r  
d i s t i n c t i o n  between t h i s  and t h e  p rev ious  designs was t h e  c l o s e r  
t o l e r a n c e  c o n t r o l  o f  a l l  t h e  dimensions (F igu re  63).  Four u n i t s  
(6-132 through 135) s u p p l i e d  i n  March represented a h y b r i d  des ign 
because they  c o n s i s t e d  o f  reworked u n i t s  which had been green machined 
and s i n t e r e d  p r i o r  t o  r e c e i v i n g  t h e  new drawing. 
by a shipment o f  two l i n e r s  (6-136 and 6-137) which corresponded 
complete ly  t o  drawing PA3611755. 

They were f o l l o w e d  

Component d e l i v e r i e s  f o r  t h i s  p r o j e c t ,  sumnarized i n  Table 
12, were completed i n  May o f  1986. No a d d i t i o n a l  f a b r i c a t i o n  
development a c t i v i t i e s  have been c a r r i e d  out .  

T e s t i n g  o f  combustor l i n e r s  was i n i t i a t e d  i n  October o f  
1985. Several  components have been q u a l i f i e d  i n  eng ineo tes ts .  
Combustor l i n e r  132 accumulated about 100 hours a t  2200 F d u r i n g  t e s t s  
f rom September o f  1986 through January o f  1987. 
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Figure 63. Revised Combustor Liner Design
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Table 12

Combustor Liner - Component Deliveries

1980 1981 1982 1983 1984 1985 1986

Dec.

Jan.

Feb.

March

2

April

May

June

4 2 4

1"* 2

3** 2

July

Aug.

Sept.

2/2"

2

Oct.

NOV,

2/2"

*Hexoloy TM KX-02

**Extruded



4.2.9 Combustor Baffle

Design discussions on the combustor baffle (Drawing

L3846109), as shown in Figure 64, were initiated in January of 1980.

Initially it was thought to fabricate thls component in two sections,
a ring and an inner face, joined by brazing. Critical final

dimensions would be incorporated through diamond grinding.

Combustor Baffle

Figure 64. Initial Combustor Baffle Design

Several design/fabrication capability meetings were held

during the first half of 1980. As a result the combustor baffle

design was modified to allow fabrication in one integral piece.
During these design discussions it became apparent that slip casting

would be the preferred forming method. Subsequently, work was

initiated on simple shapes to determine processing characteristics for

a variety of casting mixes.
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4.2.9.1 Castin 9 Formulation Development

Two slip compositions, one of a submicron SiC and the second

of a bimodal SiC had been used $ora wide variety of parts. The

bimodal composition consisted of 65 wt% of submicron SiC powder and 35

wt% 1000 grit SiC grain (mean particle size :7 _). A comparison of
these two mixes showed that the casting rate increased with the

addition of the coarse SiC grain. On the other hand, the submicron

composition exhibited better draining qualities resulting in a
superior internal surface finish. Parts made from this composition

showed about 18% shrinkage in comparison to parts from the bimodal

composition which had about 12% overall shrinkage. Final sintered

density is proportionally related to overall shrinkage. Consequently,
parts made from the submicron mix had higher final densities than

parts from the bimodal composition, assuming comparable green

densities wer6 obtained as was the case in the two systems

investigated. Fired densities ranged from 3.08 to 3.15 g/cm _ for the
former and 2.75 to 2.90 g/cm for the latter.

Mix studies on seven compositions were conducted with the

goal to reduce shrinkage and minimizing distortion problems while

still obtaining adequate densification. Table 13 summarizes the
results obtained on cast crucibles.

Tabl e 13

Evaluation of SiC Slip Compositions

Sub Micron Coarse Density Shrinkage MOR (ksi)

Mix % % g/cc % RT 1200 °C

1 0 1O0 1.93 3.32 -- --

2 10 90 1.98 3.30 -- --

3 20 80 2.42 7.44 22.5 17.0.

4 35 65 2.59 9.51 26.0 24.0

5 65 35 2.85 11.31 42.0 42.0

6 75 25 3.02 -- -- --

7 100 0 3.08 15.15 54.0 61.0

The major problem associated with Mixes 1, 2, and 3 were the

poor drain properties. The surface finish of the crucibles improved
as the amount of submicron SiC was increased. The crucibles from

Mixes 4 through 7 showed a satisfactory inside surface. Mix 4, which

corresponds to the bimodal composition mentioned above, and Mix 5

presented the best compromises with respect to drain qualities versus

shrinkage characteristics. _or further evaluation MOR strength at
room temperature and at 1200 C were measured on four of these mixes.
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This interim slip evaluation program was completed by May of
1980 and work was subsequently directed towards individual component

development.

4.2.9.2 Slip Castin_

Work on a finalized design (Figure 65) based on Drawing

L3846149 was initiated in June. An aluminum model designed with grind

stock on the three locating tabs and the height was obtained in August

and component fabrication development was initiated during the

following month.

Spaced

Z=0

I

3.750 Dia.

Gage

Oia.

7.110

Figure 65. Combustor Baffle Design

The first plaster mold consisted of a one-piece

configuration which produced a cracked part during drying. It was
believed that a constraint at the tripod regions during shrinkage was

responsible for the crack. A second mold was therefore fabricated
with removable plaster sections surrounding the three projections.

After the appropriate drying time, the sections were removed to allow
further shrinkage without constraints. Variables such as casting,

draining, and drying times were investigated.
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Attempts were madeto cast the componentsapproximately 0.5
inches thick to obtain the desired final wall thickness of 0.40"
(nominal) and assure sufficient grind stock for machining the inside
platform, which presents a mating surface for the turbine backshroud.
Evenat this casting thickness depressions opposite the three locating
tabs on the outside flow path could not be avoided. This discrepancy
from the print was permissible and according to GAPDpersonnel non
critical to the performance of the part.

Developmentefforts centered on casting and obtaining
sintered crack free componentsusing molds with inserts. Additionally
it was attempted to obtain an acceptable inside profile to avoid any
profile green machining. The slip had the tendency to fill in the
cone shaped center portion of the component. This tendency was
further promoted and exaggerated becauseof the thick wall and the
increased water retention within the cast wall.

The first crack free components(Figure 66), as determined
by X-ray radiography and fluorescent dye penetrant inspection, were
obtained in Decemberof 1980. However, the componentsproduced had
insufficient grinding stock on the O.D. Consequently, the model was
modified and a newmold was produced in January of 1981. Several
componentswere cast, successfully demoldedand green machined.
Achieving sufficient wall thickness, especially near the outer
diameter, remained a problem. Components which had passed early

processing steps showed frequently cracks after sintering on the
inside of the nose cone.

Slip development and the introduction of a new binder system

during the first half of 1981 resulted in the ability to obtain thick

walls more consistently. The incorporated changes resulted also in
better yields through drying and sintering.

Additional development work during this period addressed

difficulties experienced in green machining. New fixtures for

machining the internal profile were designed and fabricated. Attempts
in green machining the locating tabs to near net shape failed due to
the relative low green strength of the parts. Bisque firing was
conducted to improve the strength for green machining. In addition,

several sintered test components were submitted for grinding to

develop a method to grind the profile of the locating tabs.

These machining attempts failed to produce the desired
results and indicated the need for a near net shape casting especially

with respect to the locating tabs. By November of 1981 it had been
decided to obtain a new model and to eliminate a large portion of the

earlier machining requirements. The details on the three airfoil

shaped tabs and the O.D. radius were incorporated in the new model.
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F i g u r e  66. S l i p  Cast Combustor B a f f l e  w i t h  G r i n d  Stock 
on Loca t ing  Tabs 

The f i r s t  b a f f l e s  c a s t  i n  t h e  new mold des ign ( F i g u r e  
67) were processed d u r i n g  December. Four s i n t e r e d  components w h i c h  
had passed as f i r e d  NDE were se lec ted  f o r  g r i n d i n g  based on t h e i r  
d imensional  e v a l u a t i o n  even though they  were somewhat ove rs i zed  as a l l  
t h e  o t h e r  b a f f l e s  because o f  i n s u f f i c i e n t  d e n s i f i c a t i o n .  The O.D. 
r a d i u s  con tou r  was hand blended between t h e  s t r u t s  on one o f  t h e  
ground b a f f l e s .  The components (2-103 through 2-105) were d e l i v e r e d  
t o  GAPD f o r  rev iew  i n  March, A p r i l  o f  1982. 
a s - s i n t e r e d  combustor b a f f l e  w i t h  c l o s e l y  p r o f i l e d  l o c a t i n g  tabs. 

F i g u r e  68 shows an 

The problem o f  ove rs i zed  p a r t s  was addressed through two 
d i f f e r e n t  development paths.  One i n v o l v e d  composi t ional  v a r i a t i o n s  t o  
o b t a i n  i nc reased  shr inkage d u r i n g  s i n t e r i n g  and t h e  second i n v o l v e d  
f a b r i c a t i o n  of models u s i n g  cas tab le  mold m a t e r i a l s  (epoxies)  w i t h  
i nc reased  shr inkage. 



F i g u r e  67. P l a s t e r  Mold 

F i g u r e  68. Combustor B a f f l e  w i t h  P r o f i l e d  L o c a t i n g  Tabs 
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The bimodal compositions with an increased submicron powder

to grain ratio initially produced parts which were prone to cracking
during green machining or handling. The first acceptable sintered

component was obtained in May. This unit was ground, hand finished

and inspected together with a second acceptable component. Both parts

(2-107 and 2-108) were completed and shipped in August. A third
combustor baffle (2-109) made of the same composition was shipped in
October. Even though several dimensionally good components were

obtained it was found that the process had an unacceptable high

variability. Measures to obtain better control about shrinkage and

final density on these bimodal cast combustor baffles were not
successful.

Combustor baffles made in the smaller molds were processed

using the original bimodal composition. However, the shrink factor
deviations were over compensated and sintered components were

undersize. Sintering cycle modifications were investigated on several
cast baffles made in the smaller mold to determine if the desired size

could be attained. An optimized sintering cycle was determined

yielding components with sufficient stock for grinding. One combustor
baffle (2-110) was completed through grinding and shipped in December.

Fabrication development continued in parallel on both

casting mixes throughout 1982 and the first half of 1983. No problems
were encountered in obtaining the proper wall thicknesses. Some of
the baffles exhibited surface flaws after demolding. The main areas
of concern were the tab bases and the circumferential seam area. More

frequent mold turnover improved the surface quality and the integrity
of the tabs on the as cast baffles significantly and a slightly larger
radius on the tab bases decreased further the occurrence of linear

flaws. Edge chipping and cracking observed during the green machining

operation were eliminated through a modified holding fixture and a
precleaning step to remove flash acting as stress riser from the seam
area. Two as fired baffles (3-111 and 3-112) were supplied in April

of 1983. Six other baffles (3-113 through 117) with some dimensional
deviations and FPI indications were supplied to GAPD for evaluation

the following month.

Casting development was continued until August of 1983 and

subsequent finishing of work-in-process was concluded by February of
1984. A total of nine as fired combustor baffles (3-118 through 125

and 4-126) were supplied between June of 1983 and the end of this

development program, yielding excellent candidates for engine testing.

Combustor baffle 112, for example, was extensively tesAed

betweenoJuly of 1983 and October of 1985 in engine tests at 1600VF and
at 2100 F. It has accumulated over 130 hours of engine test time with

79 hours of continuous operation at c_uise speed. Combustor baffle

122 was successfully screened at 2500VF in October of 1984 and

combustor baffle 124 _as been tested in 1985 in several engine runs

predominantly at 2100_F prior to damage because of other ceramic
hardware failure.
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4.2.9.3 Plastic Formi n9

Plastic forming of combustor baffles was initiated in June

of 1983. This method was chosen as a means of developing a near net
shape forming capability which could replace the drain casting

approach and eliminate the time consuming, relative low yield green

machining operation which had been necessary to obtain a constant wall
thickness.

Initial molding tests were conducted with a converted epoxy

mold which had previously been used to fabricate a size reduced
casting model. Two plastic compositions with varying plastics content

and a grain distribution equivalent to the standard bimodal casting

composition were prepared. This composition which sinters to about

90% of theoretical was chosen because of the good test results
achieved on cast components. A molding trial was carried out on a

vertical plunger machine. However, because of the relatively low

strength mold material molding pressures had to be reduced drastically

resulting in components with inadequate packing, a large parting line
in the seam area, and too much overall thickness.

The components were processed through sintering in an
attempt to define the shrink factor for a suitable bimodal plastic

composition. Additional shrinkage data were collected on test bars
processed in parallel. Room temperature MOR strength of these early

compositions exhibited lower values than anticipated (Table
14).

Table 14

Evaluation of Initial Plastic Molding Compositions

Composition Av9 Density Mean Strength Weibull Modulus

P-1 2_90 g/cm_ 36 ksi 10.4

P-2 2.66 g/cm _ 28 ksi 9.1

These data together with the observed cracking and

blistering of the molded components indicated the need for additional

compositional development in parallel with the fabrication
development.

A steel mold, designed with the option for conversion to an
injection molding tool, was obtained in October of 1983. Molding

trials using extruded preforms and reshaping them in the compression
molding tool were carried out. The first trial conducted in October

indicated the need for an increased radius on the O.D. of the plunger

because of similar I.D. cracking pattern on all molded parts. Further

minor tool modifications were carried out to incorporate vent holes

and improve upon the integrity of the molded parts. At the same time

other development work was addressing preform fabrication, integrity,

and reheating means to assure reformability. Molding trials were

conducted with 3/4" thick extruded preforms and also with stacked 1/4"
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t h i c k  sheets because e v a l u a t i o n  o f  t h e  e x t r u s i o n  s tock  had shown 
s i g n i f i c a n t l y  increased d e f e c t  l e v e l s  w i t h  increased th i ckness .  

A l l  compression mold ing development work was te rm ina ted  i n  
February o f  1984 i n  f a v o r  o f  c o n v e r t i n g  t h e  t o o l  i n t o  an i n j e c t i o n  
mold ing mode because d i f f i c u l t i e s  w i t h  t h e  q u a l i t y  o f  t h e  preforms and 
i n  o b t a i n i n g  a homogeneous e leva ted  temperature throughout  t h e  p re fo rm 
j u s t  p r i o r  t o  re fo rm ing  c o u l d  n o t  be overcome. 

4.2.9.4 I n j e c t i o n  Mold ing 

The s t e e l  mold was reworked d u r i n g  t h e  f i r s t  q u a r t e r  o f  1984 
t o  i n c o r p o r a t e  a d d i t i o n a l  i n j e c t i o n  mold ing f e a t u r e s  ( F i g u r e  69) 
and t o  o b t a i n  a des ign o f  reduced w a l l  t h i ckness  (0.2" versus 0.4"). 
Mold ing on a 250 t o n  h o r i z o n t a l  screw machine was i n i t i a t e d  i n  March 
y i e l d i n g  32 p a r t s  s u i t a b l e  f o r  f u r t h e r  process ing.  New s i n t e r i n g  
mandrels were f a b r i c a t e d  and the  f i r s t  i n j e c t i o n  molded combustor 
b a f f l e s  were s i n t e r e d  i n  June. The p a r t s  showed good su r face  f i n i s h ,  
t a b  d e f i n i t i o n ,  and o v e r a l l  i n t e g r i t y .  I n  a d d i t i o n ,  t h e  b a f f l e s  had 
good d e n s i t i e s ,  and s u f f i c i e n t  g r i n d  s tock on t h e  O.D. b u t  were 
s l i g h t l y  o v e r s i z e d  on t h e  I.D. and showed some d i s t o r t i o n  on t h e  
p r o f i l e  o f  t h e  h o t  f l o w  path. 

F i g u r e  69. I n j e c t i o n  Mold ing Tool f o r  Combustor B a f f l e  



Subsequently, the tool was reduced on the I.D. and a new
molding trial was conducted in August. Several modifications in the

presinter treatment, sintering schedule, and fixturing were
investigated. Three different bimodal plastic compositions were used

in an attempt to optimize dimensions and have sufficient grind stock

for finishing.

Sintered parts, evaluated during the latter part of 1984 and

early 1985, showed high variability in dimensions and density (Table

15). The flow profile on some of these components showed
circumferential distortion in the vicinity of the locating struts.

Several iterations of fixturing mandrels were required to eliminate

this problem. One component (5-127) was sent to GAPD for
evaluation in the as fired state.

Composition

Table 15

Density Variations - Injection Molded Baffles

Part No. Density g/cm 3

P2 261 2.77

270 2.67

300 2.70

P5 362 2.96

368 3.03

P6 396 3.02

397 3.00

415 2.92

Further investigations into the presinter treatment and

sintering conditions indicated that significantly higher densities
could be obtained with the P2 composition than shown earlier.

Increased consistency and increased density with the optimized

conditions was also verified on three sets of MOR bars (Table 16).

Tabl e 16

Compound

Bimodal Injection Molded MOR Bars

No. of Specimens Density Range (g/cm 3) RT-MOR (ksi)

P2 23 2.86-2.95 42.77 + 6.98

P5 20 2.87-2.94 40.96 + 7.35
I

P6 5 2.92-3.00 43.13 + 3.72

The MOR data indicate no significant difference between the

three compounds. However, compound P6 exhibits a higher density as a
result of increased sintering shrinkage than either P2 or P5 rendering

the compound unsuitable for the current mold.
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A newdrawing (PA3609614)was obtained in April of 1985. It
incorporates a variable wall thickness to reduce thermal stresses by
having considerable thickness on the backshroud interface and having a
relative thin wall in the nose cone to reduce thermal stresses during
operation (Figure 70). The configuration of this newdesign further
manifested the need for a reliable advanced forming method with
variable wall thickness capability such as injection molding. Figure
71 depicts major steps within the processing sequenceused for the
combustor baffle.

/ 3 Struts Equally

I Spaced

Gage

//I t° Flat

//11
I/ / 7.147

'_t--" (,("_"_" 1 L 7.1.45

T
7.701
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Ref.

1

Figure 70. Combustor Baffle Design with
Variable Wall Thickness

The injection molding tool was modified during the second

quarter of 1985. A molding trial at a 500 ton machine was conducted
at an outside vendor site in August. It followed an inhouse molding

trial where it appeared that for the modified tool the clamping

pressure (250 ton) was on the borderline for this configuration.

Incomplete filling and flow lines were experienced.

Each molded combustor baffle was processed through a sprue

removal step in the green state. Difficulties experienced during

this step were attributed to the chuck arrangement and also to the

process sequence, e.g. before or after binder bake out. The optimized

procedure provided for components with sufficient green strength to

avoid cracking during handling and machining.
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F i g u r e  71. Processing Sequence f o r  t h e  I n j e c t i o n  
Molded Combustor B a f f l e  
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Newcontoured internal sintering fixtures were obtained.
Initial sintering tests indicated someinterference which led to
distortion and someminor rework on the O.D. and the radius near the
backshroud interface was required. Subsequently, fired components
showedgood profile consistency. Four as fired components(5-128
through 131) and one ground unit (5-132) were delivered to GAPD
during the fourth quarter of 1985.

A new molding trial was conducted in January of 1986.

Thirty-nine combustor baffles were molded after satisfactory

adjustment of the molding conditions. A group of these components
showed cracking predominantly in the nose cone area after binder

removal. The program and procedure of this processing step was
reevaluated and modified. Additional components were processed

successfully. One combustor baffle (6-133) ground to PA3609614-A was

shipped in April followed by a second ground component (6-134) in

July. A third ground component was rejected in final Q.C. (Figure
72) because of FPI flaws which could not be removed through grinding.

No additional work was carried out on this project after October of
1986.

Figure 72. Injection Molded Combustor Baffle

The first injection molded combHstor baffle (128) was
successfully tested in a rig test at 1800 _ in November of 1985 and
combustor baffle 132 was qualified at 2300 F in April of 1986. To

date, a total of four injection molded components have been qualified

for engine tests and no failures have been reported.
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4.2.10 Transition Duct

Design discussions on the transition duct were initiated
late 1979. The initial design in Drawing SKP33401 showed thin walls

attached to a thick flange which would pose problems for slip casting,

the preferred fabrication route for this component. An updated
approach, as shown in Figure 73, has an improved design, however, the

variable wall thicknesses were still beyond the slip casting
capability. It was therefore suggested to fabricate this item in two

pieces which are subsequently joined by brazing.

Transition

Duct

I

Figure 73. Early Transition Duct Design

Revised drawings (L3846119 and L3846159) were obtained in
January and in March of 1980, latter reflecting essentially a

component (Figure 74) of constant wall thickness with three locating

tabs on the combustor baffle interface. Slip casting was initially

pursued for fabrication development together with final grinding to

incorporate interface details.
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Figure 74. Transition Duct Design with Individual Locating Tabs

4.2.10.1 Slip Castin 9

Casting formulation development work, as described under

4.2.9.1, was carried out during the first half of 1980 in preparation
of focussed component development which was initiated for the

transition duct in June of 1980. The model was received in September

and a single piece plaster mold was fabricated. The first articles

were cast during the same month. Initial parts were cast without the

three locating tabs on the inside profile. A special casting fixture

was designed in October to allow for casting in place the three tabs.
The tabs are thereby attached to the inside surface of the transition
duct after the main contour has been cast and drained but before the

component is demolded and dried.

Cracks which frequently developed in the interface between the

main body and the attached tabs and obtaining a constant thick wall

were the main areas of concern. Due to the casting direction, which

is dictated essentially by the transition duct design itself, a

relative thin casting was obtained on the large I.D. and a thick

casting on the small I.D., as depicted in Figure 75.
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Figure 75. Slip Casting Schematic

Development work on the slip cast transition duct continued
through the first quarter of 1980. The problems with respect to the

wall thickness could not be resolved within that time period and it

was decided to use the isopressing/green machining approach for
fabricating transition ducts with the desired details. Initially this
method was considered the alternate fabrication method because of its

high material usage and extensive green machining time.

4.2.10.2 Isopressing/Green Machinin 9

Green machining of isopressed thick walled tube stock was
initiated in February of 1980. Special isopressing bags and pins,

green machining templates and sintering fixtures were procured within
the following two months. Billets with about a 17" outer diameter and

a 4" inner diameter were isopressed starting in April. Each of these

billets consumed roughly 120 pounds of spray dried alpha silicon
carbide material.

The isopressed billets were first rough cut to approximate

size, then, using templates on a tracking attachment to the lathe, the
I.D. and O.D. profiles were green machined incorporating a

predetermined shrink factor. Individual tabs were also green machined
from the same material and a ceramic to ceramic bonding technique was

employed to attach the three protruding tabs to the I.D. after the

tabs as well as the main transition duct body had been sintered.

Subsequent dye penetrant inspection of the first assembly revealed
several small cracks at the joints. Additional dimensional assessment

indicated that the flow profile had been machined incorrectly.
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Since new templates had t o  be prepared, i t  was dec ided i n  
June o f  1980 t o  f o r m  t h e  p r o j e c t i o n s  by i s o p r e s s i n g  on to  a s u i t a b l y  
contoured mandrel.  The f i r s t  f o u r  p ress ings  r e s u l t e d  i n  w a l l  c racks 
d u r i n g  removal f rom t h e  mandrel.  The f i r s t  good b l a n k  ob ta ined  i n  
J u l y  was green machined and s i n t e r e d  i n  August and ground i n  
September. The u n i t  was r e j e c t e d  i n  f i n a l  Q.C. because o f  excess ive 
c h i p p i n g  i n  g r i n d i n g .  

Process development u s i n g  t h e  contoured i s o p r e s s i n g  p i n  
con t inued  throughout  t h e  second h a l f  o f  1980. Progress was slowed 
because o f  t o o l i n g  f a i l u r e  and deformat ion o f  t h e  aluminum p i n .  
machining advances were r e a l i z e d  s t a r t i n g  i n  December o f  1981 when a 
CNC l a t h e  became a v a i l a b l e  f o r  machining t h e  I.D./O.D. p r o f i l e s .  
Stock was a l l owed  f o r  m i l l i n g  o f  t h e  t a b  d e t a i l s .  
ground as shown i n  F i g u r e  76, t h e  o t h e r  as f i r e d  were completed w i t h  
some dimensional  d e v i a t i o n s  i n  January. Both components (101 and 102) 
were s u p p l i e d  t o  GAPD f o r  eva lua t i on .  

Green 

Two u n i t s ,  one 

F i g u r e  76. Ground Isopressed T r a n s i t i o n  Duct 

Design d i scuss ions  between GAPD and Standard O i l  w i t h  
respec t  t o  machining d i f f i c u l t i e s  o f  t h e  i n d i v i d u a l  l o c a t i n g  tabs on 
t h e  i n n e r  p r o f i l e  r e s u l t e d  i n  a m o d i f i e d  p r i n t  (Drawing 3846232) w i t h  
a cont inuous i n s i d e  p l a t f o r m  t o  rep lace  t h e  t a b  d e t a i l s  and an o u t e r  
con tou r  change t o  p r o v i d e  for w a l l  t h i ckness  u n i f o r m i t y  as i l l u s t r a t e d  
i n  F i g u r e  77. 
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Figure 77. Transition Duct Design with Locating Platform

Seven ground transition ducts (104, 105 and 107 through 111)
and one as fired component (106) were supplied to GAPD during a

five months time period from April to August completing FY 1982
requirements. These components were fabricated according to the
modified print using standardized procedures. No major fabrication

difficulties became apparent during this time period and high

component yield was realized in each processing step.

Development work on FY 1983 requirements was initiated in

February of 1983. Progress on part fabrication was slowed because of
cracks in the isopressed billets and because of failure of the

isopress tooling.

Additional minor grinding changes were incorporated as soon

as it became feasible. The first ground transition duct (3-112) with

reduced stacking clearance towards the combustor baffle was delivered

in August. Two additional components (3-113, 114) with the same

design features were delivered the following month.
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Stock added on the height on the turbine shroud interface
was incorporated on the following delivery of a ground component
(3-115) in Novemberof that year and two additional deliveries (4-116,
117) in March and April of 1984.

Meetings held betweenGAPDand Standard Oil indicated the
necessity of the introduction of thermocouples for monitoring purposes
during testing. Previously supplied transition ducts had been
reworked by GAPDand three tube inserts had been machined for each
transition duct for close tolerances to minimize leakage during
operation.

Two new designs were received in March of 1984 consisting of

Drawing PA3609649, simplified shown in Figure 78, and Drawing
PA3610213 (Figure 79). The latter represents an ideal advanced

configuration with its integral thermscouple port design for reduced
leakage and improved flow and its 180 air flow diverter for more

symmetrical flow distribution of air exiting the flow separator
housing. Drawing PA3609649 on the other hand with its attached ports

represents a compromise design with respect to functionality and

fabricability.

"__ IK

Figure 78. Transition Duct Design with Thermocouple Holes
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Figure 79. Integral Transition Duct Design

Work on the less advanced design was initiated in March and

development work addressing issues of shrinkfit and/or brazing of the
thermocouple port inserts was conducted during the following 18

months. A shrinkfit approach which was thought to deliver the
quickest and best results was investigated first.

Several trials with tubular sections made from the same

powder lots as transition duct bodies and inserts as to be used for

the final transition duct assembly were fabricated and joined.
Materials with sufficient shrinkfactor difference to form a close

interference fit without introducing cracks and green machined to

close predetermined tolerances were subsequently selected for
shrinkfit trials with transition duct bodies. The first unit

assembled with green inserts was sintered in June. It was of

acceptable visual quality but revealed slight leakage at one of the
tube joints when air pressure tested at 5 psi. Subsequently the unit

(Figure 80) was subjected to a brazing operation during a second

furnace operation. The brazing was successful in sealing the joint

and the unit (4-118) was delivered to GAPD in October of 1984 after
grinding and NDE.
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F i g u r e  80. T r a n s i t i o n  Duct w i t h  S h r i n k f i t  Thermocouple P o r t s  

S h r i n k f a c t o r  d e v i a t i o n s  and b r a z i n g  d i f f i c u l t i e s  d u r i n g  t h e  
f o u r t h  q u a r t e r  o f  1984 rendered two a d d i t i o n a l  u n i t s  non-usable and a 
t h i r d  s h r i n k f i t / b r a z e d  u n i t  broke d u r i n g  g r i n d i n g  set-up. I n  
a d d i t i o n ,  i n  depth  i n v e s t i g a t i o n s  o f  t h e  f l o w  p r o f i l e  us ing  an o p t i c a l  
pyrometer was conducted d u r i n g  t h e  f i r s t  q u a r t e r  o f  1985 on t h e  
v a r i o u s  su r faces  i n  r e l a t i o n  t o  t h e  i n s i d e  and o u t s i d e  p r o f i l e s .  I t  
c o u l d  be shown t h a t  t h e  contours on p a r t  4-118 and 4-119, a second 
comp le te l y  ground p a r t ,  were ve ry  c l o s e  t o  t h e  t o l e r a n c e  l i m i t s  when 
considered independen t l y  o f  o t h e r  h e i g h t  dimensions. However, i n  
o r d e r  t o  o b t a i n  c o r r e c t  s t a c k i n g  dimensions, i t  had been necessary t o  
move t h e  con tou r  o u t s i d e  i t s  t o l e r a n c e  band. Subsequently, t h e  CNC 
programs were r e v i s e d  t o  a l l o w  f o r  a d d i t i o n a l  g r i n d i n g  s tock  on t h e  
i n s i d e  p l a t f o r m  as w e l l  as t h e  t u r b i n e  shroud i n t e r f a c e .  

Dur ing  g r i n d i n g  i t  had been found t h a t  t h e  s h r i n k f i t  p o r t s  
showed some misa l ignment .  Steps were t h e r e f o r e  undertaken t o  use a 
g r a p h i t e  l o c a t i n g  f i x t u r e  d u r i n g  t h e  f o l l o w i n g  s i n t e r i n g  t r i a l s .  
f i x t u r e  was marg ina l  e f f e c t i v e  and r e e v a l u a t i o n  o f  t h e  s h r i n k f i t  
approach i n d i c a t e d  t h e  need f o r  an improved at tachment method. 
J o i n i n g  w i t h  a MoSi braze and us ing  c l o s e l y  machined i n t e r f a c e s  was 
considered t h e  p r e f g r r e d  approach. 
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1985 r e s u l t e d  i n '  t h e  d e l i v e r y  o f  f o u r  g round- t rans i  t i o n  d u c t s  (5-120 
through 123) w i t h  brazed p o r t  i n s e r t s  i n  October. Only m ino r  leakage 
a t  2 p s i  a i r  p ressu re  was observed. T e s t i n g  conducted a t  GAPD on 
t h r e e  o f  these f o u r  components i n d i c a t e d  f a i l u r e  a t  low s t r e s s  l e v e l s .  
F u r t h e r  analyses i n d i c a t e d  cracks o r i g i n a t e d  near o r  d i r e c t l y  f rom t h e  
brazed j o i n t s .  A d d i t i o n a l  t e s t  b a r  work conducted on MOR bars  w i t h  a 
t h i n  l a y e r  o f  braze a p p l i e d  showed a r e d u c t i o n  i n  f l e x u r e  s t r e n g t h  o f  
up t o  about 50%. I t  was t h e r e f o r e  concluded t h a t  i n t e r f a c i a l  s t resses  
caused t h e  f a i l u r e s  o f  t h e  components. One u n i t  (5-122) w i t h  brazed 
p o r t s  was r e t u r n e d  f rom GAPD and reworked w i t h  l oose  f i t t i n g  p o r t s .  

Dur ing  1985 work had a l s o  been i n i t i a t e d  on o b t a i n i n g  t h e  
i n t e g r a t e d  advanced des ign by u s i n g  more s o p h i s t i c a t e d  green machining 
programs t o  f i r s t  generate the  180 d i v e r t e r  and then second t o  
machine t h e  i n t e g r a t e d  p o r t s  as  shown on Drawing PA3610213. A 
t r a n s i t i o n  d u c t  (4-124) c o n s i s t i n g  o f  a h y b r i d  des ign w i t h  loose 
f i t t i n g  p o r t  i n s e r t s  and a d i v e r t e r  (F igu re  81) was completed i n  
February o f  1986. 

F i g u r e  81. T r a n s i t i o n  Duct w i t h  D i v e r t e r  and Loose F i t t i n g  P o r t s  
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The f i rst  ground t r a n s i t i o n  duc t  (6-125) hav ing a l l  i n t e g r a l  
f e a t u r e s  (F igu re  82) was d e l i v e r e d  t o  GAPD i n  May. Ex tens ive  CNC 
green machin ing us ing  a l a t h e  and a m i l l  i s  r e q u i r e d  t o  genera te  these 
non symnet r ica l  f e a t u r e s  on isopressed b lanks.  A l l  subsequent 
component work concent ra ted  on the  i n t e g r a l  des ign  and development 
work on s h r i n k f i t  and b raz ing  was d iscont inued.  Shipments d u r i n g  t h e  
remainder o f  1986 and the  f i r s t  h a l f  o f  1987 cons is ted  o f  f o u r  non 
machined t r a n s i t i o n  duc ts  (6-127, 128 and 131, 132) and t h r e e  ground 
components (6-127 and 7-133, 134). 

F igu re  82. I n t e g r a l  T r a n s i t i o n  Duct 

Work on an improved i sop ress ing  procedure was i n i t i a t e d  l a t e  
i n  1986. A shaped i sop ress ing  bag and p i n  f o r  inc reased powder y i e l d  
p e r  b lank  and reduced green machining t i m e  were designed and 
f a b r i c a t e d .  The f i r s t  p ress ing  t r i a l s  were conducted i n  March o f  1987 
and r e s u l t e d  i n  b lanks  w i t h  I.D. c i r c u m f e r e n t i a l  cracks as shown i n  
F igu re  83. 
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Figure 83. Isopressed Shaped Blank

Several minor tool and set-up modifications were required to

eliminate cracking. The first crack free blank was obtained in May

and several additional units were fabricated in June and July.
Progress on the contoured blank eliminated the need for the large
straight blanks saving thereby about two-thirds of the initially

required amount of spray dried material. In comparison, the contoured
blanks require about 35 pounds of material while the straight blanks

require about 120 pounds.

Additional isopressed and machined components are being

processed under the AGT extension to fulfill FY 1987 shipping

requirements of four components.

With the exception of the brazed components, sintered alpha

silicon carbide transition ducts have performed well in rig and engine

testing. Component 109, fo_ example, has successfully accumulated in

a test rig 25 hours at 2500VF and component 111 has been subjected to
10 cycles at 2100 F within an engine test. In addition, compoRent
6-125 accumulated almost 100 hours of engine test time at 2200VF prior

to being damaged during a major engine failure.
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4.2.10.3 I n j e c t i o n  Mo ld ing  

Development o f  i n j e c t i o n  mold ing as a near n e t  shape fo rm ing  
method f o r  t h e  t r a n s i t i o n  duc t  had been d iscussed s ince  t h e  i n t e g r a l  
des ign was i n t r o d u c e d  i n  March o f  1984. I n j e c t i o n  mold ing development 
was subsequent ly s t a r t e d  a t  t h e  beginning o f  FY 1985 and t h e  i n j e c t i o n  
mold ing t o o l  ( F i g u r e  84) was rece ived  a t  t h e  end o f  t h e  f i r s t  q u a r t e r .  
Minor  r e v i s i o n s  w i t h  respec t  t o  corners,  f i l l e t  r a d i i ,  and s i z e  o f  
sprue bushing were i n c o r p o r a t e d  a f t e r  a ny lon  r e p l i c a  had been molded 
u s i n g  a 700 t o n  machine. 
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The mold was designed w i t h  removal i n s e r t s  f o r  f o rm ing  o f  
t h e  thermocouple p o r t s .  These i n s e r t s  a l l owed  f o r  mold ing t r a n s i t i o n  
duc ts  w i t h  o r  w i t h o u t  ho les  w i t h i n  t h e  thermocouple p o r t  bosses. 
L a t t e r  was thought  as a p recau t iona ry  measure because o f  t h e  
p o s s i b i l i t y  o f  weld l i n e s  formed below these ho les  g i v i n g  r i s e  t o  
d e f e c t s .  

An extended mold ing run over  a two day p e r i o d  conducted i n  
May y i e l d e d  35 t r a n s i t i o n  duc ts  w i t h  p o r t  ho les and 22 w i t h o u t  p o r t  
ho les.  Several  o f  these components were processed d u r i n g  June through 
September through s i n t e r i n g  and as f i r e d  NDE. 

Dimensional e v a l u a t i o n  i n d i c a t e d  i n s u f f i c i e n t  shr inkage was 
ob ta jned  even though t h e  components had achieved d e n s i t i e s  up t o  3.17 
g/cm . A d e t a i l e d  reexaminat ion o f  t h e  s h r i n k f a c t o r s  was conducted 
i n d i c a t i n g  t h e  need f o r  a t o o l  r e v i s i o n  t o  o b t a i n  s u f f i c i e n t  s tock  on 
ground dimensions and t o  achieve as f i r e d  to le rances  as r e q u i r e d  on 
t h e  contoured p r o f i l e s .  A d d i t i o n a l l y ,  i t  was found t h a t  i n  some cases 
t h e  weld l i n e s  below t h e  p o r t  ho les (F igu re  85) conta ined d e f e c t s  as 
de tec ted  by dye pene t ran t  i nspec t i on .  

' Wefd line 

F i g u r e  85. I n j e c t i o n  Molded T r a n s i t i o n  Duct 

The i n j e c t i o n  mold ing t o o l  was r e v i s e d  a t  t h e  end o f  1985 
us ing  s h r i n k  f a c t o r s  which showed some v a r i a t i o n  w i t h  d i r e c t i o n .  A 
mold ing run  on a 1000 t o n  h o r i z o n t a l  screw machine was conducted a t  an 
o u t s i d e  vendor y i e l d i n g  79 components. A l l  u n i t s  were molded w i t h  
s o l i d  thermocouple bosses t o  e l i m i n a t e  t h e  weld l i n e s  t h a t  had 
p r e v i o u s l y  occurred. 
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An initial group of 20 transition ducts was designated for

evaluation and optimization of the binder removal and the presinter

treatment procedures. In addition, it was planned to process some of

these parts through sintering and conduct in depth dimensional

analysis even though this lot consisted of components which were
produced early during the molding trial when the packing pressure and

the ejection mechanism had not been optimized. Unexpected
difficulties were experienced during binder removal. Over 50% of the

components exhibited cracks after bake out. The majority of rejects
were located in one specific bake oven. Additional investigations
were conducted and it was concluded that the standard loading

procedure was inadequate. Special measures had to be implemented to
allow for sufficient support of the components during binder bake out
and to accommodate the thermal expansion/contraction movement during

the bake cycle.

Following the binder removal procedure the components were

subjected to a presinter preparation. Units exhibited an unusual
amount of fragility and susceptibility to blow outs. Steps were

implemented to modify the cycle and an additional group of 20
transition ducts was processed using the revised procedure.

These transition ducts showed after sintering some flow

lines which held dye penetrant fluid and cracks in the push-out pin
locations. Otherwise the units exhibited good densities and showed

good consistency on the flow profile. Evaluation of the stacking
dimensions showed that only marginal stock was present on these

initial components.

Evaluation of several sintered transition ducts revealed

X-ray defects in the vicinity of the platform. Figure 86 represents a

close-up picture of one of the units, showing defects after firing
which appear to be a result of insufficient green density in localized

areas. Green density measurements on sectioned components indicated
variations of up to 0.03 g/cm_ (Figure 87), however, no defects could

be detected on green components destructively by slicing select

components or nondestructively by using microfocus X-ray.

Units molded towards the end of the molding run exhibited

improved green density consistency. This quality improvement was
attributed to optimized molding parameters and better packing. The

internal cracking problem observed on the earlier molded components

was no longer apparent. Two injection molded as fired units (6-129,

130) were supplied to GAPD for progress evaluation in September and

October respectively.

The injection molding tool was revised in November to allow
for additional stock on the height dimensions and to change the

push-out mechanism from individual pins at the inner platform to a
full size ring at the large diameter end. The radius on the inner

platform was enlargened for improved material flow and to minimize the

probability of having processing related defects in this high stressed
area.
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F i g u r e  86. Defects  i n  S i n t e r e d  T r a n s i t i o n  Duct 

F i g u r e  87. Green Dens i t y  Determinat ion Through S e c t i o n i n g  
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An i n j e c t i o n  mold ing t r i a l  was conducted a t  a custom molder 
s i t e  i n  December. 
shot  s i z e  ( e q u i v a l e n t  t o  about 2900 cm ) was used and t h e  mo ld ing  
parameters were a d j u s t e d  t o  o b t a i n  maximum green d e n s i t y  w i t h o u t  
excess ive f l a s h i n g .  The mold ing run  was conducted w i t h  two mo ld ing  
compounds (SX-05 and SX-09) and y i e l d e d  68 p a r t s  (F igu re  88) s u i t a b l e  
f o r  f u r t h e r  process ing.  

A 700 t o n  h o r i z o n t a j  screw machine w i t h  a 110 ounce 

F i g u r e  88. Cross Sec t i on  o f  As Molded T r a n s i t i o n  Duct 

Components f rom t h i s  l a s t  mold ing run  have been processed 
d u r i n g  t h e  f i r s t  h a l f  o f  1987, most show f l o w  l i n e s  a f t e r  s i n t e r i n g .  
One NDE acceptable component was ground t o  s p e c i f i c a t i o n s  b u t  revea led  
cracks w i t h i n  t h e  w a l l  on t h e  smal l  d iameter  end. A d d i t i o n a l  
t r a n s i t i o n  duc ts  f r o m  t h i s  l o t  w i l l  be processed under t h e  AGT 
ex tens ion  d u r i n g  t h e  t h i r d  q u a r t e r  o f  1987. 
17 sumnarizes a l l  t r a n s i t i o n  d u c t  d e l i v e r i e s ,  isopressed as w e l l  as 
i n j e c t i o n  molded. 

The f o l l o w i n g  Table 
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1980

Table 17

Transition Duct - Component

FY

1981 1982 1983 1984

Deliveries

1985 1986 1987

Dec.

Jan.

Feb.

March

I/I*

April

May

June

2

3

July

Aug.

Sept.

1

2

1

1

I**

Oct.

NOV °

*Reworked

**Injection Molded

1 1 4 1/1"*
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4.2.11 Wave Springs

The ceramic wave springs used in all engine tests to date have been

fabricated of SiRN. materials. However, at a test temperature of
2500VF, some of _h_ wave springs have shown unacceptable plastic

yield. Garrett has therefore redesigned three wave spring

configurations to take in account the different material properties of
the SiC material. Figure 89 shows their location within the engine.

Wave Springs Regenerator
Shield (SASC)

• Load g 'Thermal(SSN)

Isolator

Backsnroud

Figure 89. Location of Wave Springs

Drawings for three different wave spring designs, as shown

in Figure 90, were obtained in January of 1987 for the fabrication of

sintered alpha silicon carbide parts. Based on the tolerances
required it was decided to use isopressed tube stock and green machine

it into flat rings allowing for grind stock on all surfaces. A

grinding methodology was devised which took into account drawing
requirements as well as the capability of inhouse equipment.

Isopressing of the tube blanks was initiated in February and

new attachments for grinding the sinusoidal wave forms were designed
and fabricated. The first sintered rings became available for

O.D./I.D. grinding in May and wave grinding was started in June, 1987.

Figure 91 shows two completely ground wave springs.

Grinding completion is scheduled for August under the AGT extension.
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Figure 90. Wave Spring Designs
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5 .O Conclus ion 

Standard O i l  has developed f a b r i c a t i o n  processes f o r  severa l  
h o t  f l o w  p a t h  components o f  t h e  AGT 101 program. F i g u r e  92 shows t h e  
ceramic components which have been supp l i ed  t o  GAPD f o r  t e s t i n g  and 
F i g u r e  93 i d e n t i f i e s  t h e  l o c a t i o n  o f  these components w i t h i n  t h e  
engine and i n  a d d i t i o n  i t  a l s o  d e p i c t s  components, such as t h e  t u r b i n e  
r o t o r  and t h e  i n n e r  and o u t e r  d i f f u s e r ,  which were i n c l u d e d  i n  t h e  
work scope f o r  o n l y  a l i m i t e d  t ime, e a r l y  i n  t h e  program, w i t h o u t  
r e s u l t i n g  i n  components s u i t a b l e  f o r  t e s t i n g .  

F i g u r e  92. S i n t e r e d  Alpha S i l i c o n  Carbide 
AGT 101 Components 
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Combustor Liner

Turbine Shroud --

Stator

Turbine Backshroud -] [_

Combustor Baffle ---_

\
r,...,, , ,,, :., , :_,, J

-- Outer Diffuser

Regenerator Shield y

Transition Duct J [_ y

Turbine Rotor _

Inner Diffuser

Figure 93. Hot Flow Path Components

Standard Oil's accomplishments with respect to ceramic

component development within the AGT 101 program can be summarized in

five key areas:

Establishment of a design/fabrication interface

Iterative component development

Near net shape fabrication of large and/or complex

shapes
Material properties duplicated in some of the

fabricated components

Availability of hardware for engine testing
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Des ign /Fabr i ca t i on  I n t e r f a c e  

D i r e c t  one-on-one i n t e r a c t i o n  o f  engineers o f  t h e  r e q u i r e d  
d i s c i p l i n e s  f r o m  GAPD and Standard O i l  r e s u l t e d  i n  components w i t h  
f a b r i c a t i o n  and assembly advantages w i t h o u t  reduced performance i n  the  
engine. One o f  these components which b e n e f i t t e d  f rom t h i s  c l o s e  
i n t e r f a c e  i s  t h e  t r a n s i t i o n  duct ,  as shown i n  F i g u r e  5.3. The des ign 
m o d i f i c a t i o n  f rom i n i t i a l l y  t h r e e  l o c a t i n g  tabs r e q u i r i n g  e i t h e r  a 
separate j o i n i n g  s tep  o r  compl icated hand machining t o  one cont inuous 
r i n g  which i s  i n c o r p o r a t e d  through a r o u t i n e  l a t h e  machining o p e r a t i o n  
rep resen ts  o n l y  one o f  t h e  changes s u c c e s s f u l l y  implemented w i t h i n  t h e  
AGT 101 program. 

F i g u r e  94.  T r a n s i t i o n  Duct - F a b r i c a t i o n  
Induced Design Change 

I t e r a t i v e  Component Development 

Engine development c a r r i e d  o u t  by  GAPD t o  reduce leakage, 
improve temperature c a p a b i l i t y ,  and o p t i m i z e  ceramic component 
i n t e r f a c e s  t o  improve o v e r a l l  performance r e s u l t e d  i n  severa l  des ign 
m o d i f i c a t i o n s  o f  t h e  i n d i v i d u a l  ceramic components. I n  some cases 
these changes cou ld  be accomnodated ve ry  e a s i l y  d u r i n g  f i n a l  g r i n d i n g  
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. o r  through a r e v i s e d  green machining procedure. I n  o t h e r  i ns tances ,  
however, a new fo rm ing  process o r  CNC green machining had t o  be 
developed t o  produce components t o  s a t i s f y  these new requirements.  

The t r a n s i t i o n  duct ,  f o r  example, underwent severa l  des ign 
F igu re  95 shows only m o d i f i c a t i o n  d u r i n g  t h e  course o f  t h e  program. 

t h e  f o u r  ma jo r  des ign changes, severa l  minor  changes address ing 
s t a c k i n g  h e i g h t s  were implemented as soon as f e a s i b l e .  The r o t a t i o n a l  
symnetry o f  t h e  e a r l y  p a r t s  which cou ld  e a s i l y  be handled by l a t h e  
green machining o f  isopresseg tube s tock were m o d i f i e d  f o r  performance 
reasons t o  i n c o r p o r a t e  a 180 d i v e r t e r  and t h r e e  i n t e g r a l  thermocouple 
p o r t s .  As a r e s u l t  o f  these des ign changes CNC green machining had t o  
be implemented and i n j e c t i o n  mold ing development was i n i t i a t e d  t o  
a r r i v e  a t  a more c o s t  e f f e c t i v e  near n e t  shape f a b r i c a t i o n  method. 

F i g u r e  95. T r a n s i t i o n  Duct - I t e r a t i v e  Component Development 

Near Net Shape F a b r i c a t i o n  

Net shape process ing i s  u l t i m a t e l y  e s s e n t i a l  t o  achieve h i g h  
r e l i a b i l i t y  a t  minimum cost .  S i g n i f i c a n t  progress has been 
demonstrated w i t h  i n j e c t i o n  mold ing i n  components such as combustor 
b a f f l e s ,  t r a n s i t i o n  duc ts ,  s t a t o r  segments, and t u r b i n e  shrouds where 
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a wide span o f  comp lex i t y ,  o v e r a l l  s i z e ,  and cross s e c t i o n a l  t h i ckness  
i s  r e q u i r e d  t o  produce components s u i t a b l e  f o r  r i g  an‘d engine t e s t i n g .  
A d d i t i o n a l  development, however, i s  r e q u i r e d  t o  f u r t h e r  reduce mold ing 
induced d e n s i t y  g r a d i e n t s  which can lead  t o  some d i s t o r t i o n  and 
warpage a f t e r  s i n t e r i n g .  

The development o f  n e t  shape components i s  f r e q u e n t l y  c o s t l y  
and t i m e  consuming and can r e q u i r e  h i g h  t o o l i n g  cos t ,  thus,  n o t  a l l  
components f a b r i c a t e d  under t h e  AGT-101 program were at tempted us ing  
n e t  shape fo rm ing  techniques. Several components such as combustor 
l i n e r ,  regenera to r  s h i e l d ,  backshroud and t r a n s i t i o n  d u c t  were e i t h e r  
s o l e l y  f a b r i c a t e d  by i s o p r e s s i n g  and green machining o r  t h i s  
f a b r i c a t i o n  technique was used t o  assure adequate and t i m e l y  supply  o f  
components f o r  t e s t i n g .  F i g u r e  96 shows t h e  two p a r a l l e l  f o rm ing  
approaches o f  i n j e c t i o n  mold ing and i s o p r e s s i n g  used f o r  t h e  
f a b r i c a t i o n  o f  t r a n s i t i o n  ducts .  I t  c l e a r l y  d e p i c t s  t h e  advantage o f  
near n e t  shape fo rm ing  w i t h  respect  t o  m a t e r i a l  usage and machining 
t ime. 

F i g u r e  96. T r a n s i t i o n  Duct - From Isopress ing/Green 
Machining t o  Near N e t  Shape Forming by 
I n j e c t i o n  Molding 
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Material Properties in Fabricated Components

Material properties of components were evaluated by testing
modulus of rupture (MOR) bars cut from the fabricated, sintered

components and comparing these data with lot and baseline MOR data.
It has been shown that it is possible to obtain material properties

within select components which approach or even duplicate baseline

performance. However, the generally high variability in average
strength and Weibull modulus indicates the need for further processing

improvements and more stringent in process control during further
development efforts.

Availability of Hardware

Sintered silicon carbide components suitable for rig and

engine testing were supplied throughout the program. In some cases
parallel processing of isopressed/green machined and near net shape

formed components was implemented to first provide components early in

the program and second to assure an adequate supply of goodquality
components while the more cost effective forming technique was being

developed. A summary of all hardware deliveries for the AGT 101 is

given in Table 18.

The above table shows that a relative large quantity of
complex components has been made available for testing and each of

these components underwent several design changes to further improve
on its fabricability and/or performance within the rig and engine

environment. This shows that the question of determining the

feasibility for utilizing high performance ceramic components within

gas turbines has been affirmatively answered during the course of the
AGT 101 project.
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Table 18

Turbine Rotor

Duct Spacers

Backshroud

Turbine Shroud

Turbine Stator

Regenerator Shield

CombustorLiner

CombustorBaffle

Transition Duct

WaveSprings

AGT-101 HardwareDeliveries

October 1979 - July 1987

FY

1980 1981 1982 1983 1984 1985 1986 1987

1

30

6 6 4 6

4 2

4 7

9 5 10 6

8 10 17 10

9 17 2 4 3

11 4 3 6 8 3

4
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APPENDIX

Common Work - Final Report

July 14, 1981

M. Srinivasan

Project Manager

1 - INTRODUCTION

This topical report of the AGT Program Com_ilonWork narrates the technical

activities between October 197° and March 1981. The report has four areas of

activity: (1) developmental efforts in rotor fabrication, (2) non-destructive

materials evaluation, (3) determination of mechanical properties, and (4)

determination Ot physical properties.

The rotor developmental efforts were completed with an earlier modified
Chrysler tool. This report details the efforts including injection molding,
thixotropic casting, and joining of rotor segments. Also included is a limited
effort investigating chemical vapor deposition (CVD) coatings on sintered alpha
silicon carbide and hot isostatic pressing (Hipping) of partially pre-densifieo
alpha Si C.

The application of the state-of-the-art non-destructive evaluation (NDE)

techniques are detailed including high frequency pulse-echo ultrasonics, micro-
focus x-ray, scanning laser acoustic microscopy (SLAM), and scanning photo-

acoustic microscopy (SPAM).

The mechanical properties investigations resulted in baseline data on alpha

silicon carbide manufactured by cold pressing, slip casting, and injection

molding. The mechanical strength of both thixocast and warm compression molded
reaction sintered SiC was also investigated. Limited experiments characterizing

the oxidation effects, possible slow crack growth effects, and elevated tem-

perature creep were conducted.

The thermal diffusivity and specific heat of both alpha SiC and reaction

bonded SiC were determined as a function of temperature.
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2 - SUI_Uz,P,Y

As a result of discussions between The Carborundum Company and the Prime
Contractors (Detroit Diesel Allison*and Garrett Turbine Engine Company) during
October - December 1979, a number of developmental activities were defined under
the AGT Program Common activity. These were classified broadly into five major

areas: rotor fabrication, non-destructive evaluation, mechanical properties,

physical properties, and machining studies. Work areas were identified in each

of the above topics, and a work plan was submitted to the Prime Contractors

during the middle of January 1980 which included a brief narrative for each of
the tasks in the work plan with schedules and milestones.

2.1 - Rotor Fabrication

A number of rotor fabrication methods were studied during this period.
the injection molding task, a rotor tool from an earlier Chrysler program was
modified so that separate segments of an unbladed rotor could be injection
molded. By selective variation of injection molding parameters, visually
defect-free rotor segments were injection molded, baked, and sintered to high
densities (>98% theoretical).

In

Baking studies on large segments were conducted by employing an extended
baking cycle, plasma baking, and a vacuum bake approach. Crack-free baking was
not accomplished with any of these approaches. This cracking was attributed to
either the inherent limitation in the then existing process or to deficiencies
of the rotor tool which gave rise to inherent molding defects.

Joining of rotor segments was examined by various techniques. These
included establishing a silicon carbide bond between isopressed and sintered

alpha silicon carbide cyclinders by using sinterable submicron powder and an

extrudable alpha silicon carbide mix, and also bonding reaction bonded silicon

carbide to alpha silicon carbide. Excellent results were achieved with the

extrudable mix consistently achieving final assembly densities of >3.13 g/cc.

An inorganic braze material was also used in isolated brazing attempts.
Flexural MOR bars were sliced from cylinders joined with sinterable powder.

Room temperature strength testing demonstrated that some joints withstood 5U,O00

psi flexural bend stress with failure occurring outside the joint. Micro-
structural examination revealed excellent microstructure of the hot pressed

silicon carbide and evidence for grain growth across the joint interface.

Considerable effort was also directed to the fabrication of a reaction
bonded silicon carbide rotor by thixotropic casting. The challege was to form a
thixocast rotor of adequate green strength which could be cured without cracking
and to then achieve through-the-section siliconization. These goals were
attained during this period. Joining of a reaction bonded SiC shaft to the
reaction bonded SiC hub of a rotor was also demonstrated. Centrifugal casting

*now: Allison Gas Turbine Division of General Motors Corporation
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attempts were madeby using a laboratory centrifuge. The results were inconclu-
sive in that void-free castings could not be madereproducibly.

Hot pressed silicon carbide was investigated as a hub material for the AGT

rotor program. Room temperature MOR (modulus of rupture) results indicated that

very high strengths are possible for certain compositions. These high strengths

were obtained on small hot-pressed disks. However, translating these strengths
to large, thick sections needs further development. The results have indicated

the potential of hot pressed SiC as a core material for the AGT rotor.

Alpha SiC substrates were coated with SiC by CVD process and evaluated by

for room temperature strength, microstructure, and failure analysis. There was

no significant strength enhancement or a reduction in the variability of the

original strength distribution. Microstructural examination revealed that, in
general, coatings are well bonded to the substrate with an absence of microporos-

ity in the CVD coatings. Therefore, these coatings can perform a useful sealing
function.

Hipping of partially sintered alpha silcion carbide resulted from a joint
participation of NASA and Carborundum. The results have indicated density
increases by hipping of up to 98.5 percent of the theoretical value. The
strength determinations have indicated that significant improvements in room
temperature strength cannot be achieved for an initially 98 percent theoreti-
cally dense sintered alpha silicon carbide.

2.2 - Non-Destructive Evaluation

The advanced NDE methods, scanning laser acoustic microscopy (SLAM) aria
scanning photoacoustic spectroscopy (SPAM), were investigated for both sintered
alpha silicon carbide and reaction bonded silicon carbide.

Significant progress was made in detection of approximately 0.004- to
O.O05-inch voids in O.l-inch thick disks. The defect detection capability level
was increased to 4.3 to 3.5 percent of section thickness by using microfocus
x-ray radiography. Although surface roughness of as-fired surfaces causes dif-
ficulties for both methods, useful NDE signals can be obtained from both SPAM
and SLAM. Complex shape examination seems to be very feasible by SLAM. The
SPAM method is also applicable to complex-shaped components by appropriate cell
design. However, both methods require extensive experience for correct
interpretation of NDE signal. In addition, it is not yet possible to describe
the type, size, and location of defects directly from the primary data.

The applicability of high frequency ultrasonics (35 MHz) to examine B4C

inclusions and voids in sintered alpha silicon carbide was demonstrated.
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2.3 - Mechanical Properties

The two-parameter Weibull distribution, the three-parameter Weibull
distribution, and the method of moments were all considered. The effect of
nonuniform stress distribution that occurs along the depth of a bend specimen
was incorporated. Computer codes were generated to analyze strength data by
each of the above methods. Significant progress was made in understanding the
statistical strength distributions. The test data dictates the applicability of
each of the above methods. These statistical techniques were applied to the
baseline data obtained on injection molded, cold pressed, slip cast and
isopressed sintered alpha silicon carbide.

Failure analysis of baseline strength bars produced by injection molding
sintered alpha SiC has indicated that greater than 6U percent of the failures
occurred from processing-related volumetric flaws located at or close to the
tensile surtace. Similar results were observed also with slip cast silicon
carbide.

The characteristic strength of 64,700 psi at room temperature of injection
molded test bars is among the highest observed in our laboratories, and the
characteristic strength slip cast test bars was found to be 59,400 psi at room
temperature. The strengths of dry pressed sintered alpha silicon carbide and
fine grain reaction bonded silicon carbide are approximately 20-25 percent lower
than that reported earlier and have been traced back to processing anomalies.
Corrective measures were subsequently implemented. The excellent retention of
room temperature strength at 2192°F for all silicon carbide materials investi-
gated in this program was demonstrated.

The time-dependent mechanical properties investigations such as creep and
stress rupture were also conducted. Compression molded reaction sintered sili-
con carbide exhibited no time-dependent failure in IUO hours at applied stress
levels of 40,000 to 56,000 psi in 4-point bend at lO00°C (1832°F). Creep
deflections ranging from 3500 to 8000 micro inches were observed; however, time-
dependent failure in stress rupture occurred at 1200°C (2192°F) for applied
stresses _54,000 psi. Creep deflections r@nging from 5,900 to 25,900 micro
inches were also observed.

Four-point bend creep experiments at 1200°C (2192°F) were

completed for compression molded reaction sintered silicon carbide for

thrge applied stress level_. Minimum creep rates ranged from 7.44 x
10-" in/in-h to 3.32 x 10-_ in/in-h, with an experimental value for

stress exponent, n _ 3. A reduction in densities up to approximately

two percent was noticed, perhaps owing to cavitation during creep.

The static stress rupture experiments conducted with dry pressed sintered

alpha SiC at 15U0°C indicated limited failures within 10U hours for applied

stress levels greater than 45,000 psi in four-point bend. Fractography indi-
cated no oxidation-related slow crack growth phenomenon. These results indi-

cated the difficulties in applying the traditional known life predictions
established via stress rupture tests in ceramics to the failure of SiC ceramics.

A more fundamental understanding with respect to mechanisms causing the stress
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rupture of silicon carbide materials needs to be established before undertaking
life-predictive data reduction.

Selected oxidation experiments, conducted at 1260°Cfor 200 hours has
revealed that roomtemperature flexural strengths of inherently low strength
fine grain reaction sintered silicon carbide can be increased by up to 63
percent.

2.4 - Physical Properties

Thermal diffusivity and specific heat measurements were made as a function
of temperature for both sintered alpha silicon carbide and fine grain reaction
bonded silicon carbide.
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3 - SCOPE OF THE AGT COMMON WORK

The scope of the AGT Common Work was defined in a series of meetings be-
tween Carborundum, DDA and AiResearch. The Common Work was to involve develop-
mental activities in the rotor fabrication area which were to aid in defining
the best combination of processing techniques which were to allow fabrication of
DDA and AiResearch unique rotors respectively. The Common Work was also to
involve examination of the applicability of available NDE methods to silicon
carbide and also detailed mechanical properties data base acquisition which was
to aid both the designer and silicon carbide processing. With these objectives,
the Common Work plan consisted of the following five major areas:

- Rotor Fabrication
- Non-Destructive Evaluation
- Mechanical Properties
- Physical Properties
- Machining Studies.

The early termination of funding precluded the completion of some tasks and
precluded the achievement of latter program scheduled goals. Those areas and/or
goals specifically affected by early fund curtailment are indicated.

3.1 - RotorFabrication

The objective of rotor fabrication activity was to develop techniques to
produce integral rotors such as the ones in the AGT program. The approach was
to fabricate rotor segments which were to be joined by appropriate means.
Various joining methods were investigated such as alpha silicon carbide bonding,
high temperature brazing, and bonding by using hot pressing. One-piece molding
and insert molding with a porous ceramic core were approaches which were
examined. Development efforts also included studying the use of alpha silicon
carbide shell which can be filled with a reaction sintered silicon carbide
material. Alternate fabrication methods included thixotropic casting and
centrifugal casting of reaction sintered silicon carbide. Hot pressed silicon
carbide core with expected high mechanical strength was investigated as a
possibility. The merits of chemical vapor deposition and hot isostatic pressing
(hipping) was investigated as a means to increase mechanical strength.

3.2 - Non-Destructive Eva|uation

The objectives of the advanced NDE effort in the AGT Common pool were to:
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(a) Apply existing advanced NDE technology for flaw detection, and characteri-
zation in candidate SiC materials;

(b) Examine the role played by NDE in increasing the reliability of AGT com-
ponents, such as rotors, by coupling NDE with fracture mechanics
approaches; and

(c) Feed back the NDE information to processing to achieve processing
imp rovement s.

The NDE tasks involved fabrication of seeded defect specimens and evalua-
tion by different NDE techniques such as x-ray radiography, high frequency
ultrasonics, scanning laser acoustic microscopy (subcontracted to Sonoscan,
Incorporated), and scanning photoacoustic spectroscopy (subcontracted to Wayne
State University). Also, acoustic emission as a NDE technique was evaluated.
The effectiveness of the NDE methods in screening critically defective bars was
to be established by NbE-fracture mechanics coupling. The last two tasks could
not be completed during the contract tenure due to funding revisions.

3.3 - Mechanica| Properties

(a)

(b)

(c)

The objectives of the mechanical properties evaluation efforts were to:

Extend the design data base of prime candidate materials, sintered alpha
silicon carbide and reaction sintered silicon carbide. The need is par-
ticularly acute in the area of time-dependent high temperature properties.

Conduct some supportive testing of advanced material efforts.

Perform cold spin tests to characterize the materials and processes, and to
evaluate joining methods and materials.

(d) Evaluate the interaction between silicon carbide materials and thermal
transient environments.

(e) Test materials cut from fabricated components to correlate results with
both baseline data and properties of test bars fabricated with the
components.

The mechanical properties studies were to include baseline properties
determination, fracture mechanics, proof testing/spin testing, oxidation, slow
crack growth studies, creep, mechanical fatigue, thermal fatigue, strength
distribution, failure prediction, joint evaluation, and property translation on
component s.

Tasks (c), (d), and (e) were not completed during the contract tenure.
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3.4 - Ph_,sical Properties

For both alpha silicon carbide and reaction sintered silicon carbide, base-

line physical property measurements were to be made. These properties were to
include thermal diffusivity, heat capacity, coefficient of thermal expansion,
and elastic modulus and Poisson's ratio which are important parameters governing
thermal stress resistance. Measurements of residual stresses and coefficient of

friction were also to be made.

Of these properties, only the thermal diffusivity and the specific heat
measurements were made during the tenure of the contract, additional planned

work was not undertaken due to funding revisions.

3.5 - Machinin 9 Studies

The objective of this study was to investigate the effects of different
methods of machining on the residual strength of SiC candidate materials for AGT
components.

An investigation was to be carried out co determine the value of alternate

and/or new machining methods as compared to traditional diamond grinding which
was to serve as control. The methods to be investigated were to include, but
not be limited to, ultrasonic machining, EDM, ECM, and laser machining.

Residual strength measurements after machining by various methods were to be the
basis for evaluation.

The machining studies task could not be accomplished during this contract
tenure due to funding revisions.
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4 - ROTOR FABRICATION

The rotor fabrication task investigated the most promising processing
methods for both the single-phase sintered alpha silicon carbide and the dual-
phase reaction sintered silicon carbide. The fabrication of a single-piece
rotor presents unique material and process problems. For example even though
large pieces of the alpha SiC ceramic can be easily injection molded, the maxi-

mum allowable cross section in order to obtain a crack-free component after

baking was 1 inch during the contract period (Oct.79 -Oct. 80). A similar limi-

tation can be envisioned for a uniform and complete siliconization during the
processing of a reaction sintered silicon carbide rotor.

Therefore, the basic developme&t approach consisted of:

(a) Injection molding a thick rotor hub and investigating various baking tech-
nology (for alpha SIC).

(b) Thixocasting a rotor, with blades, of reaction sintered SiC composition and

investigating the optimum siliconization conditions.

(c) Injection molding segments of a rotor hub (alpha SIC), baking and sinter-
ing, and investigating joining of segments by subsequent elevated tem-
perature hot pressing (by using both sinterable alpha SiC powder and
extrudable SiC mix as joining medium). A study consisting of filling the
pre-sintered outer shell with sinterable alpha SiC powder which can be hot
pressed to obtain a hot pressed alpha SiC core joined to the outershell,
and an effort to fill the outer shell of alpha SiC with a reaction bonded
SiC core which were then joined by hot pressing were included in this task.

4.1 - Injection Moldin 9 of Segments

An earlier Chrysler rotor tool was modified such that a series of inserts
when placed into an existing tool cavity allowed an outer shell, an inner core,
and a bottom plate to be formed separately. The segments could then be used for
bonding studies.

The inserts in place in the mold tool assembly is shown in Figure 97. The

three segments of this modified Chrysler tool is shown individually in Figures 98

through 101. In the initial molding trials, many defective moldings were made.
Because of the fact that the original tool design was not intended for molding

inserts, these defects were introduced during molding. The solid hub segments

were molded with fair results (no gross cracking). The outer shell segment

after molding had circumferential cracks on the inside where the sprue feeds the
wall. Again, after molding, the inner core pieces cracked radially from center

with the separation of the bottom lip.
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Fig. 98- SegmentAssembly in
the Chrysler Tool

Fig. 99- Solid Hub Segment
(One Large Piece)

Fig.100- Outer Shell Segment Fig.101- The Inner Core Segment
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Uuring May-June 1980 after optimization of processing variables, several

pieces of outer shell, inner core, and bottom plates were molded, baked, and
sintered to densities greater than 3.13 g/cc with no visual cracks after any of

the processing steps.

4.2 - Bakin 9 Studies (One-Piece Rotor)

Studies were undertaken to modify the standard bake cycle to yield crack-

free solid hub segment components on cross sections in excess of one inch.
These studies were:

- Extended Bake Cycle,
- Plasma Bake Approach, and
- Vacuum Bake Approach.

None of these were completely successful and a crack-free baked rotor could
not consistently be obtained.

4.3 - Joining Studies

Joining studies were conducted by using both complex shapes, rotor segments
of the modified tool, and simple cylinders of isopressed and sintered alpha
silicon carbide. The latter was performed to characterize the strength of the
joints and to study the microstructural development across the joint interface
by optical microscopy.

4.3.1 - Segments Joining

The objective here was to obtain an integral rotor by joining the

segments by various means.

4.3.1.1 - Filling the Outer Shell with

Alpha SiC Powder and Hot Pressing

This technique involved several combinations of plunger and car-

bon powder. Eventually, carbon and phenolic resin were hand mixed and

used as plunger material, and the outer shell filled with alpha SiC

powder prior to hot pressing (Figure 102) After hot pressing, the sur-
face of the bell was sliqhtly deformed. This method produced a piece

with a density of 2.83 g/cc.
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Fig.102- Insert of a Sinterable Alpha SiC Powder and SJntered Outer
Shell and Hot Pressed. Density of Final Body = 2.83 g/cc

The microstructural development across the hot pressed joint was
also examined in a rotor fabricated by filling the outer shell with
sinterable powder and hot pressing. The results are shown in Figure 103.
In Figure (a), a poor joint area is evident. Figure (b) shows a
good area in which there exists good bonding and grain growth across
the joint interface. Also, the microstructural development is such
that there exists no essential difference in the microstructures of

the hot pressed sinterable powder and the sintered outer shell

segment. In Figure (c), microstructural differences exist between

the two materials. The hot pressed powder shows finer grain size and

perhaps lower density. These three examples have demonstrated that

there exist temperature and pressure variations during hot pressing in
different areas of the interface which result in varying degress of

bonding, and microstructural development across the interface.

It must be pointed out that the hot pressing direction is not

perpendicular to the joint interface in these segment joining
investigations.
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Fig, 103- Microstructure Across the Hot Pressed Interface of a

Sintered Outer Shell Filled With Sinterable Alpha
S iC Powde r
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Fig. 103 (Continued)
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4.3.1.2 - Filling the Outer Shell with Reaction-
Sintered SiC Mix and Hot Pressing

An injection molded sintered alpha SiC rotor shell can also be
filled with a reaction sintered SiC material. A resin-SiC grain mix

is compacted into the hollow rotor shell and heated. The filled por-
tion is infiltrated with molten silicon to form reaction sintered SiC.

The reaction sintered SiC mix must be carefully formulated to

minimize shrinkage. Large shrinkage results in a weak pure silicon
interface between the sintered alpha SiC shell and the RBSiC core.

Also the thermal expansion rate of RBSiC material and the sintered

alpha SiC shell must closely match to prevent the presence of residual
stresses.

In an initial attempt, a reaction bonded SiC piece was used to

fill the bell-shaped segment before hot pressing. The RBSiC mix was
hand tamped and cured. The cured segment was removed from the bell,

siliconized, and the siliconized segment was reinserted into the bell
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Fig. 104- Outer Segment Filled With RBSiC And Then Hot Pressed

and hot pressed. The result (FigurelO4)was that the insert filled in

quite well, but the insert was not as dense as required. The bell-

shaped segment exhibited some cracking which was present before hot

pressing. In other attempts, pieces also cracked during hot pressing.
Some cracks were filled with silicon while others were not. Thermal

expansion mismatch are considerable for these materials.

An example of microstructural development across the joint is
shown in Figure 105. The large grains of SiC in the reaction bonded SiC
region is due to the nature of the mix used. Good bonding can be seem
in the region examined. However, there existed regions in which po-
rosity was present at the joint interface.

4.3.1.3 - Alpha SiC Bonding

Between Rotor Segments

In initial attempts, sinterable powder was used as a joining

medium which surrounded the segments to be joined by hot pressing.

Here a presintered inner core segment was used as an insert into
the outer shell. Sinterable powder surrounded the insert and then the
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Fig.105- Microstructural Development Across The Sintered

Alpha SiC And Reaction Bonded SiC Interface

whole assembly was hot pressed. The results indicated an unexpected
amount of large porosity in the joining material. This porosity is
the result of some presintering at the hot pressing temperature before
the application of pressure. In subsequent experiments, pressing
began at even lower temperatures to eliminate this problem.

In another trial, the bell-shaped segment was filled with sin-
terable powder and also a presintered insert. Pressure was applied at

lower temperatures and final hot pressing was done at an elevated
temperature. The final density of the piece was 3.13 g/cc and deve-

loped no cracks during hot pressing. A cross section examination

(Figure 106)indicated that the joint areas appeared sound. However,

there exists many large pores in the joint material. Also, cracks in
the insert, which were introduced during sintering, did not heal

during hot pressing.

In the preceeding experiments, carbon powder filled the clearance
between the hot press mold and the outer bell segment. It was con-
cluded that pressure transfer was not optimum in these experiments,
and that the side pressure of the carbon powder caused some hot press
mold breaks.
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Fig. 106- Hot Pressing Of A Sintered Alpha SiC Outer Shell IVith Presintered
Inner Core And Sinterable Powder Surrounding The Inner Core.
Final Density Of The Assembly = 3.13 g/cc

In subsequent experiments, some rigidity was sought for the
plunger material next to bell. This requirement was achieved by using
a plunger made of carbon and phenolic resin. In an experiment, the
two halves of a cracked insert (cracked due to molding flaws) were
inserted into the outer bell and sinterable powder was placed between
the segments and the entire assembly was hot pressed. An excellent
final density (3.15 g/cc) was achieved (Figure 107). The bond appeared
to be good and no cracks were seen. The only defect was a small non-
dense region between sections of insert. However, a considerable sur-
face deformation of the outer shell was evident. It was then decided
to change the plunger material. In subsequent experiments, the
plunger material was carbon powder next to the bell and carbon-phenolic
resin above this (Figure 108).

In addition to the use of sinterab]e powder as the joining

medium, investigations were also carried out to utilize extrudable

alpha SiC mix as the joining ,_dium between the segments. The hot

pressing arrangement shown in Figure lO8was used with some modifica-
tions to make the bell fit tighter. The results were excellent

(Figure 109). The joining of segments by hot pressing by using an

extrudable alpha SiC mix was developed and achieved consistently

higher ( 3.10 g/cc) final assembly densities.
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Fig. 107 - Hot Pressing of Sintered Alpha SiC Outer Shell Filled
With Sinterable Alpha SiC Powder. Plunger Made of
Carbon and Phenolic Resin. Final Density of Body =
3.15 g/cc. Good Bonding Across Joint Interface
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HOT PRESS LOADING AP._GEbI_T: A.G.T. COMMON

-If-

TOP PLUNGER

A

PLUNGER MIX

CARBON

A.G.T. 1 /_--_x _I- POWDER

!

GP_PHFOIL --

CARBON POWDER.-- --

[
BOTTOM PLUNGER

Fig. 108 - Schematic of the Arrangement
Used for Hot Pressing
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Fig. 109 - Hot Pressing by Using Extrudable Mix Between Sintered Segments
(Outer Shell, Inner Core, and Bottom Plate)o Note Absence of
Bonding Between Bottom Plate and Outer Shell in the Region
Parallel to Hot Pressing Direction. Final Body Density =
3.08 g/cc

4.3.2 - Joining of Simple Cylinders
and Characterization

4.3.2.1 - Alpha Silicon Carbide Bond

Efforts were directed to obtain bonding by hot pressing by using
sinterable alpha SiC powder at the interface. In various attempts,
different amounts of powder were used to obtain different thicknesses
of hot pressed silicon carbide between two isopressed and sintered
silicon carbide (Figure II0). The average strength of isopressed
material used for this joining study was 48,160 psi with a high of
52,870 psi and a low strength of 40,090 psi. The joined cylinders were
cut into MOR bars of the cross section 0.125" x 0.25". These were

tested in 4-point bend with 0.5" inner span and 1.5" outer span at
room temperature. The results are shown in Table 19. Although the
average bond failure occurred at 37.3 + 8.51 ksi, the indication that
some joint interfaces withstood stresses approximately 50 ksi when
failure occurred in joint material (hot pressed SiC) is noteworthy.
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Table19- Strength Data for Joints Established by Hot
Pressing Isopressed and Sintered Alpha SiC

Sinterable Alpha SiC Powder Was Joining Medium

Bond Failure
(103 psi)

D434-14"
47.U9

40.48

40.51
38.28

47.09

52.87

A

36.66
40.32

B
31-/11

D589-60
42.74
36.16
41.49
35.02

79
25.31

8O
17.18
28.34
30.57

(Surface Damage)

Joint Material Base Material

Failure Fai Iure
(1(Ij psi) (103 psi)

D434-14 A
33.23 50.28
38.38

B
79 4U.O0

29--/88 43.06

(Surface Void)
79

80 48.19
56_,35

(No Obvious 80
Fracture Origin) 35.01

50.38 42.22

(Internal Void) 35.01
52.60 41.23

(Surface Void)
45.08
44.44

Unknown (Unable to

Locate Bond by Radiography)
(105 psi)

B

29_48

79
34.79
42.83

* These are cylinder identification numbers.
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Fig. 110 - Hot Pressing of Two Sintered Pieces with
Sinterable Powder as Joining Material

Figure IIi shows the microstructural development for No. 80-U
( _ 56,350 psi). The hot pressed SiC microstructure (right) is
den_e_ than isopressed material (left). No obvious failure origin

could be located by SEM investigation for this specimen. Figure 112

shows the microstructure for another specimen (qf = 30,570 psi) The
joint appears sound; however, failure occurred at'one of the joints

due to surface machining damage as seen by SEM failure analysis.

Figure 113 shows the microstructure for No. 80-6 (a _ 50,380 psi).
This specimen, which failed in the hot pressed SiC Fe_ion, had an

approximately 100 pm subsurface void as the fracture origin, as shown
in Figure 114. In Figure 115, the microstructure of No. 80-08 is

shown. Here again, good bonding is evident. No obvious fracture
origin could be located by SEM fractography for this specimen.

Finally in Figure 116, the poor microstructure of hot pressed silicon

carbide (higher porosity) is shown for No. 79-5 (o_ = 29,880 psi). In
general, the bond identification by x-ray radiography for specimens

cut from cylinder No. 79 was not feasible because of the almost

equivalent densities of hot pressed SiC and isopressed and sintered

SiC. Failure of this specimen was due to large subsurface pores shown

in Figure 117. Failure occurred in the hot pressed silicon carbide

region.
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Fig. 111 -

_

No. 80-Uo Isopressed SiC Microstructure (Left) and
Hot Pressed SiC Microstructure (Right). Evidence of

Grain Growth Across Joint Interface Seen

Fig. 112 - No. 80-5. Microstructure of Isopressed Sintered
Alpha SiC (Left) and Hot Pressed SiC (Right)
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Fig. 113 - No. 80-6. Isopressed SiC Microstructure (Left) and Hot Pressed
SiC Microstructure (Right). The Specimen Failed in the Hot Pressed

SiC Region.

Fig. 114- No. 80-6. Failure Origin Within The Hot Pressed SiC Region
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Fig. 115- No. 80-8. Microstructure of Isopressed Sintered Alpha SiC on
the Left and Hot Pressed SiC on the Right. NoObvious Fracture
Origin wasLocated on the Fracture Surface

Fig. 116 - Microstructure of No. 79-5.
on Right is Hot Pressed SiC

On Left is Isopressed SiC and
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Fig. ll7 - Failure Origin for No. 79-5. Failure Occurred in

the Hot Pressed Silicon Carbide Region

4.3.2.2 - Reaction Bonded SiC Bond

Five cylinders of 1.5-inch diameter were made by using fine grain
reaction bonded silicon carbide mix by pressing. After siliconiza-
tion, segments of these cylinders were used to join two isopressed and
sintered alpha silicon carbide cylinders. In one attempt, a segment
of the reaction bonded silicon carbide cylinder was placed in between
isopressed and sintered alpha silicon carbide cylinders and hot
pressed under standard conditions. The results indicated that only
one of the alpha silicon carbide cylinders was bonded to the fine
grain reaction sintered silicon carbide and that bonding was poor. In
two subsequent attempts which used lower temperatures and lower
pressures, bonding was never established. It is not understood as yet
why bonding was not been achieved between alpha SiC and RBSiC in
simple cylinder forms by hot pressing; perhaps, thermal expansion
mismatch between the two silicon carbides prohibit bonding during cool
down.
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4.3.2.3 - High Temperature Braze

Work in this area involved joining studies by using an inorganic
high temperature proprietary braze developed by The Carborundum
Company.

The major considerations in the selection of a successful braze
for SiC were:

- Good wetting of the SiC by the braze

- Close match of thermal expansion coefficients

- Chemical compatibility
- Oxidation resistance, and

- Strength at use temperature.

The proprietary braze meets the above requirements. This tech-
nique was successfully applied to alpha SiC by attaching a shaft onto
the hub of a simple wheel. The brazing material was placed on the
part in such a manner that when heat was applied, the braze flowed
into the space between the hub and the shaft. An excellent bond was
formed between the two parts, as can be seen in Figure 118.

In the initial trials of joining cylinders which were conducted
although bonding appeared to be good externally, when the cylinders
were sliced for MOR bars, the existence of voids at the interface was
obvious. The method, therefore, needs further development.

4.4 - Alternate Fabrication Methods

4.4.1 - Thixotropic Casting

The general approach was to use a pattern of the turbine rotor to make
a rubber mold. A thick mud-like mix consisting of a resin and SiC grain is
cast into the rubber mold. Vibration is used to make the mix fill the
mold, and the rigid part is removed from the mold and subsequently silicon-
ized to form reaction sintered silicon carbide.

DDA provided Carborundum several large truck turbocharger rotors which
have the general shape of the turbine rotors in the AGT program. They had
approximately the desired hub section thickness. One of these rotors was
used as a pattern for making a cast mold. The rotor blades were increased
0.050 inch in thickness with laminations of wax sheets. This thickness
increase was done to aid in filling the blades during thixotropic casting.
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Fig. 118 - Joining by Use of an Inorganic Braze

Figures 119 and 120 snow the metal rotor with its cast blade inserts,

and the inserts and mold barrel assembly.

Initially, two RBSiC rotors were cast and fully processed. The first
was cast with Carborundum's standard coarse-grain thixotropic casting mix.

Typical 4-point bend strengths are only about 30,000 psi. Nevertheless,

this Mix was chosen as a baseline point to gain experience with the mold.

A rotor was cast without difficulty and siliconized in a routine fur-

nace run. A gradual resin bake-out oven run was not used, yet the piece

was siliconized without any apparent cracking• The part was diamond wheel
sectioned to reveal the interior which is shown in Figure 121 This pho-

tograph is life size.

This rotor was not fully siliconizea through the entire hub section•

This shortcoming was anticipated to be the major problem of this forming
method• The top surface of tile rotor has numerous bubbles and cracks.

These kinds of defects were eliminated in subsequent castings•
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Fig. 119- Metal Rotor and Cast Blade Inserts

_j-"

Fig. 120- Inserts and Mold Barrel Assembled
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Fig. 121 - Siliconized Coarse Grain Thixotropic RBSiC Rotor

Another rotor was cast by using a much finer casting mix. The pro-

cessing was identical to the previously described rotor. Figure122 shows
the rotor as cast and Figure 123shows the rotor as siliconized.

The top surface of the siliconized rotor (Figure 123)has shallow "mud

cracking". This occurred due to shrinkage of a thin layer of resin which

rises to tile top during casting. This resin-rich layer could easily be

removed before siliconizing and this problem was eliminated in future
castings.

Figure 124 shows the cross section of the rotor. Again, tbe hub was
not completely siliconized through the section thickness, but it was much
better than the first attempt.

Subsequently, four more thixotropic cast fine grained RBSiC rotors

were cast and furnaced. The first was cast with a 3/8-inch center through-
hole to reduce the thickness that had to be siliconized. This rotor had a

2.98 g/cc final density and had a very good surface finish.

The other three rotors were a]l solid cast and siliconized by various

techniques. Figure 125 shows a cross section of a rotor which was silicon-

ized in a vacuum furnace with a standard furnacing cycle. This furnacing

was identical to that used for the first two rotors made. The only

variaton was that extra siliconizing mix was used. The depth of silicon
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Fig. 122- Top Surface of Fine Grain Thixotropic Cast Rotor

Fig. 123- Bottom Surface of Fine Grain Thixotropic
Cast Rotor After Si|iconizing
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Fig. 124- Cross Section of Fine Grain Thixotropic
Cast Rotor After SiIiconizing

t

.f

/"

Fig. 125 - Cross Section of A Thixotropic Cast Vacuum
Furnace Siliconized RBSiC Rotor
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penetration wasgreatly improved and the entire thick section was complete-
ly siliconized. Ironically, the small diameter portion of the hub was not
fully sil iconized.

Onerotor was siliconized with optimized furnacing conditions in a
large production induction furnace with argon atmosphere. This rotor was
completely infiltrated with silicon (Figure126). There are apparently two
regions: an outer layer approximately 1/8- to 1/4-inch thick which has a
large amountof free silicon, and a central zone with less free silicon in
the microstructure. This variation occurs because the furnace does not
have good atmospherecontrol and even though the furnace is purged with
inert gas, someair leakage occurs. The oxygenoxidizes the surface of the
rotor and removescarbon. Whenthe rotor is silicon infiltrated, there is
no newsilicon carbide formed at the surface from a silicon-carbon
reaction. Thus the outer zone has a higher free silicon anount. Further
attempts eliminated this effect. The induction furnace with argon thus
demonstrated that thick sections of fine grain material can be siliconized.

4.4.2 - Shaft Attachment

Twoattempts were madeto attach a shaft to the rotor body. In both
cases, the rotor wasmachinedat the hub surface to accept a cast shaft in
a shallow locating recess. The rotor and shaft were cast and cured
separately, machined, and joined together by using thixotropic mix as a
cement and filler. After curing the filler mix, the unit was furnaced in
the standard way.

In the first attempt, there were voids at the interface possibly as a
result of incomplete removal of machining dust.

With the second piece (Figure127), care was taken to thoroughly clean
the joining surfaces, and a finer particle size mix was used as a filler.
With the exception of small casting voids near the surface of the hub, this
part looked good, with complete siliconization and joining of shaft and
rotor (Figures 128and129).

4.5 - Hot Pressed Silicon Carbide

Hot pressed alpha silicon carbide was investigated because of its potential

higher strengths than sintered alpha silicon carbide.

Submicron alpha silicon carbide powder was hot pressed at 1700°C (3092°F)

to 2000°C (3632°F) temperature range into approximately 1.25-inch diameter disks

using four different additives as hot pressing aids. MOR bars were sliced out
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Fig.126 - Cross Section of A Thixotropic Cast Induction
Furnace Si|iconized RBSiCRotor

Fig. 127- RBSiCThixotropic Cast Rotor Sliced to ShowShaft
Attachment and CompleteSi]iconization
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Fig. 128- Fired RBSiCThixotropic Cast Rotor With Shaft Attached

Fig. 129 - Close-Up of Shaft Attachment. Apparent Crack at Left Interface

Area is Light Reflective Difference in Photo. No Crack was
Evident.
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of these disks to 0.1" x 0.05" cross section with edges chamfered. Room tem-
perature flexural strength was measured in 3-point bend by using a span of 0.75
inch. The effect of compositional variation is summarized in Table 20.

Table 20- Effect of Chemistry on Strength of
Hot Pressed Alpha Silicon Carbide

Hot Pressing Bulk Strength
Additive Temp, °C Density, g/cc o f, ksi

1% A 1800 3.10 - 3.15 63.68 + 5.08
1% A 2000 3.1_ - 3.19 80.85 + 5.48
1% B 1800 3.14 - 3.17 84.78 + 18.48
1% B 2000 3.18 - 3.19 119.96 + 13.90
1% C 1800 2.90 - 2.94 85.01 + 4.75
1% C 2000 3.10 - 3.15 110.06 + 14.13
2% C 1800 3.05 - 3.10 112.40 + 7.87
2% C 2000 3.17 - 3.18 95.90 T 2.88
2% D 1700 3.16 67.51 + 6.70
2% D 1800 3.20 - 3.24 103.39 + 13.58
2% D 1900 3.20 101.85 + 13.24
2% D 2000 3.20 107.11T 8._2

Flexural strengths of over 100,000 psi indicate the potential of this
approach. The hot pressing efforts were halted after these efforts under the

common work and were transferred to an appropriate unique program. The

challenge there will be to hot press thicker and larger bodies with homogeneous

microstructure and to translate the high strengths obtained on specimens
machined from hot pressed large bodies.

4.6 - Evaluation of CVD Coatings

Earlier Carborundum work, which has been confirmed by work done under this
contract has demonstrated that a majority of failure-causing flaws are
processing-related, void-like defects lying at or close to the tensile surface
of a flexural bend bar. Therefore, it was hypothesized that chemical vapor
deposition of silicon carbide could offer an attractive technique for potential
strength enhancement.

The adverse effects of machining on strength could be significantly
decreased with a theoretically dense surface coating. Additionally, the
resistance of less than theoretically dense materials to various types of
atmospheric attack and corrosion including oxidation may be significantly
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enhanced with theoretically dense coatings. The state-of-the-art of chemical
vapor deposition of silicon carbide has advanced to the point where a "final"
and comprehensive evaluation of its utility for high performance structural
materials should be made.

In this study, 125 injection molded test bars were fabricated and
inspected, and were divided into 5 groups of 25 bars. Twenty-five (25) bars
were retained as a control to evaluate strength. Thirty C_O) bars each (which
included 5 each for establishing coating conditions) were shipped to:

° San Fernando Laboratories
o Materials Technology Corporation
° Deposits and Composites, Inc.
° Refractory Composites, Inc.

After the bars were coated, they were tested at room temperature in 4-point
bend with a O.75-inch inner span and a 1.50-inch outer span. The complete
strength results of CVD coatings on injection molded and sintered alpha SiC in
the as-fired condition are as shown in Table 21. The strength of the control
population is lower than the 61.5 ksi for injection molded bars reported
elsewhere in this report. The bars for the CVD study were fabricated at an
earlier date when 50 ksi was the strength obtained by injection molding.

Table 21- Strength Evaluation of CVD-Coated Alpha SiC Bars

Average

Coating Number Weibul I Parameters

Thickness of of + S.D. _ Low High
Vendor (inch) Specimens _si) m (ksi) _ f o f

Control -- 25

DCl-Coated 0.004 24

MTC-Coated 0.012 25
RCI-Coated 0.003 20

San Fernando 0.004 23

Labs (CNTD)
San Fernando 0.004 21

Labs (CNTD)

48.86 + 5.75 8.9 51.49 34.47 60.77
43.89 + 8.80 4.8 47.91 22.80 59.15
47.47 + 5.51 9.U 49.70 35.87 55.98
52.52 T 7.78 6.9 56.04 37.17 63.77
49.68 ¥ 14.UO 3.0 56.32 18.42 65.59

52.58 + 10.65 4.9 57.31 32.02 65.59

Tt can be seen that the changes in both room temperature strength and
Weibull modulus are mixed on CVD and CNTD coated alpha SiC bars. It should be
noted that coating thickness varied significantly for specimens from the same
vendor precluding meaningful comparisons. In the case of CNTD bars, two bars
have unusually low strengths of 18,000 psi. Elimination of these two specimens
from the group increases the Weibull modulus to 4.9. Figure l30 shows the
strength levels achieved in various density ranges for CVD coated bars. For the
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Fig. 130- Strength Levels Achieved in Various

Density Ranges for CVI) Coated Bars

RCl-coated bars, strength enhancement is observed for low density specimens.
In the case of the San Fernando Lab CNTD-coated bars, strength enhancement is
seen for all density ranges except for the 3.12 - 3.129 g/cc density range.

In Figure 131, the microstructure and failure origin for injection molded
and sintered alpha silicon carbide are shown for a control specimen. The

unetched microstructure shows micropores which are located primarily at grain

boundary triple points as revealed in the etched microstructure. The failure

origin for this specimen which failed at 60,700 psi is a processing-related
unbonded SiC inclusion. In addition to this flaw type, voids in the range of

70 to 200 _m were also seen to be failure causing in many other specimens. No

machining was performed for these control specimens and also all CVD coatings

were deposited on the as-fired surfaces of injection molded and sintered alpha
silicon carbide. In Figure 132,the nature of the coatings is examined via opti-

cal and scanning electron microscopy for MTC-coated specimens. The cauliflower-

like appearance of the deposit indicates the size of individual grains. Good

adhesion is evident with the absence of micropores in CVD SiC compared to sin-

tered silicon carbide. The columnar growth of B-SiC grains during the CVD pro-

cess can also be seen in one of the figures. MTC samples appeared to have the
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CVD coating applied three times. On the fracture shown, no obvious processing

defect can be identified despite the low strength of 35,820 psi.

In Figure 133, the coatings established by DCI are examined. Good CVD adhe-
sion is evident. Some isolated micropores can be seen in the CVD SiC layer.
The as-deposited CVD B-SiC surface shows that there exists a range of distribu-
tion of size of the CVD-SiC spheres deposited. The columnar growth of these
spheres can also be seen in one of the figures. The failure origin for a speci-
men with a strength of 55,000 psi is shown as an internal processing-related
3-dimensional void.

The coating established by Refractory Composites, Inc. is shown in
Figure 134. The as deposited surface shows the spheres smaller than the earlier
cases reported. The etched microstructure confirms this hypothesis. The depo-
sit seems to be broken at several places. The grain size and distribution of
CVD _-SiC is very similar to that of a-SiC so that it is very difficult to
visualize the boundary or the interface. The failure origin for a specimen
shown in the figure is a processing-related internal void (of : 63,770 psi).

The CNTD coating produced by San Fernando Laboratories is examined in
Figure 135. The surface appearance of the coating indicates that the CNTD
coating proces deposits a smoother layer of B-SiC on _-SiC substrates than
other CVD processes examined. Examination of the microstructure in the unetched

condition indicates good adhesion of the CNTD coating to the _-SiC substrate.

The absence of micropores in the CNTD coating is noticeable. The etched viev_

indicates that the etching conditions are not optimum for the CNTD B-SiC. The

fracture origin for a specimen (a= 65,590 psi) is shown in one of the figures
to be a small void (approximately 50 um) lying in the interior.

In summary, microscopy investigations on several selected CVD-coated speci-
mens from different vendors have shown that:

(a) Coating thicknesses vary vastly from specimen to specimen (even among the
same vendor).

(b) Coating adherence, in general, is very good.

(c) No advantage in strength enhancement is seen even in cases where fracture

origin seems to be in the CVD SiC region.

Possible residual stresses introduced during the coating process

can influence the fracture strengths significantly. Because no

annealing was performed prior to strength testing for possibly

removing or minimizingresidual stresses, the absence of strength
enhancement by CVD coating can be expected. In addition, in many

cases processing-related voids control fracture of CVD coated bars.
However, the completely dense microstructure of the coatings indicates

they can perform useful sealing functions.
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4.7 - Hot Isostatic Pressing (Hipping)

Application of hot pressing techniques to powdered ceramics normally makes
densification possible at lower temperatures with fewer additives. Hipping
typically yields a finer, denser, more homogeneous microstructure with minimal
grain boundary phases and concomitant higher strength and enhanced high tem-
perature properties. Hot isostatic pressing has been extensively developed for
metal and carbon-carbon composite processing with significant property
improvements. Application of this technique to ceramics has been restricted by
the lack of high temperature (greaser than 1500°C) autoclaves and appropriate
non-reactive canning techniques. This program will take advantage of rapidly
developing technology and the latest high temperature vessels. The first phase
of the program _,il] evaluate densification by the "open" process b} processing
partially sintered silicon carbide with various densities and hence decreasing
amounts of open porosity.

Earlier in the program, a microstructural analysis was completed on
hipped bars which were earlier hipped at NASA. The results have indicated that:

(a) No apparent microstructural improvement over "as-received" material for
specimens hipped at 1750°C or 1850°C;

(b) Some indication of pore shrinkage in specimens hipped at 1950°C; and

(c) No excessive grain grov_h at any of the temperatures utilized in hipping.

The microstructural examination indicated that future hipping effort

should perhaps be directed to higher temperatures (+1900°C) with varying hold
times.

Additional experiments were attempted at 1900-2000°C at 15-30 ksi using
NASA-Lewis facilities.

Several plates of sintered alpha silicon carbide supplied by Carborundum

were returned by NASA after hot isostatic pressing at Lewis Research Center.

The details of hipping are given in Table 22. Hipping did improve tilebulk den-

sity of initially 88-92 percent dense sintered alpha SiC. For plates v_hich were
initially 98 percent dense, hipping further increased the density by approxi-

mately 1 percent. The water accessible surface-connected porosity decreases

significantl_ by hipping even on low density (88-92% theoretical) plates--

indicating putential for surface flaw healing by hipping. Densities of plates

hipped at 2050°C are very impressive.

Test bars, 0.125" x 0.250" x 2.6", were cut from hipped plates. Careful
bar location identifications in the plate were Kept and the bars were returned
to NASA for SLAM NDE and correlation with NDE of plates. After the bars were
received subsequently from NASA, they were tested in 4-point bend with an inner
span of 0.75 in. and an outer span of 1.50 in. at 25°C and 1200°C. Fifteen (15)
specimens were tested at each temperature to serve as control. The 25°C
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flexural strength was 48.51 + 6.51 ksi while at 1200°C, the strength was 54;07 +
6.33 ksi. The specimens had-art average density of 3.15 g/cc (98 percent
theoretical). Ten (10) bars of hipped material (1950°C, 20 ksi, 2 hours) have
an average flexural strength of 48.04 + 7.47 ksi under similar test conditions.
Thirteen (13) bars of hipped material -C2050°C, 20 ksi, 2 hours) exhibited an
average strength of 50.85 + 6.82 ksi. Based on these data, it thus appears that
an improvement in room temp--erature strength cannot be achieved for initially 98
percent theoretically dense sintered alpha silicon carbide. Similar results
have been reported by G. Watson of NASA Lewis Research Center, Cleveland.t

4.8 - Major Conclusions in
Rotor Fabrication Effort

(a) Molding, baking, and sintering of rotor segments made with the modified
tool were achieved with a minimum of visual defects. These segments were
used for joining development studies by hot pressing.

(b) For sintered alpha SiC, thick section binder removal technology has not
been demonstrated using the injection molding tooling available for the
common program.

(c) Successful joining of rotor segments was achieved by hot pressing using an

extrudable silicon carbide mix at the interface. Consistently high den-

sities ( 3.13 g/cc) for the final assembly were obtained. Grain growth

across the joint interface was also observed by optical microscopy. In

test bars, base material or joint material failure occurred in many
instances rather than the joint failure. (Caution: Testing was 4-point

bend, and not tension).

(d) Significant progress was made in the thixotropic casting of reaction bonde_
silicon carbide rotors. Using a mix with an optimized carbon content

resulted in crack-free casting, and curing and complete siliconization.

(e) A shaft attachment to a thixocast reaction bonded silicon carbide rotor by

using a thixocast reaction bonded silicon carbide mix was successfully

demonstrated. Visual examination revealed the bonding to be excellent.

(f) It was demonstrated that hot pressing is a viable approach to achieve

higher strength in a rotor core.

t Most recent results are contradictory, however. This discrepancy has been
attributed to surface contaminaton of the earlier bars during hipping
(G. Watson, personal communication, May 1981).
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(g)

(h)

Hipping of an initially 98 percent theoretically dense sintered alpha sili-
con carbide can increase the bulk density of approximately a percentage
point; however, no improvement in room temperature strength was
demonstrated.

The chemical vapor deposition (CVD) coatings of SiC on injection molded
sintered alpha silicon carbide test bars did not change the resulting
strength significantly. However, excellent adherence of CVD and CNTD SiC
to substrate alpha SiC was observed.
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5 - NON-DESTRUCT[VE EVALUAT]ON

One of the objectives of the advanced NDE effort in tile AGT common pool was
to apply the existing advanced NDE technology for flaw detection, and charac-
terization to candidate SiC materials. The NDE tasks involve the fabrication of
seeded defect specimens and evaluation by different NDE techniques such as x-ray
radiography, high frequency ultrasonics, scanning laser acoustic microscopy, and
scanning photoacoustic spectroscopy.

5.1 - Seeded Defect Disks

Because voids, carbon, and boron carbide inclusions are the critical
defects which limit the as-fabricated strengths of sintered alpha silicon
carbide, these were tile defects which were intentionally seeded in disks of
thicknesses ranging from 0.i to 0.5 inches. Initially, we also had a specimen
fabrication effort witil small defects (25-50 _m) in tile program. However, the
seeding of individual defects of this size proved to be impossible by using the
existing techniques. It was then decided that because of the fact that there
exist many naturally occurring defects of this small size in sintered alpha
silicon carbide, an examination of control specimens will yield useful NDE
information.

5.2 - Hicrofocus X-Ray

Disks with intentionally fabricated voids, B.C and carbon
inclusions were examined with microfocus x-ray. _he results are given
in Table 23.

The results are very encouraging, especially in the 50-125 _m size defects.
Destructive sectioning of a O.l-inch thick seeded defect (void) disk was con-
tinued in order to correlate with the microfocus x-ray indications. This disk
was seeded with voids in the range of 50 to 125 pm. The maximum defect lengths
(in the x-ray direction) have been II0 pm, 130 um, 160 pm, and 190 pm for a
series of five (5) defects (Figure136). In addition, two voids of 90pm maximum
diameter were also seen on sectioning which were not detected by microfocus
x-ray. These observations have confirmed our detection sensivity to be 4.3-3.5
percent of section thickness examined. However, this detection capability is at
the cost of time. At 30 kV, the shots take about 22.5 minutes at a 15-inch
focal spot to film distance. At 45 kV, the time drops to 4 minutes at a 20-inch
focal spot to film distance. The 50-125 _m voids are clearly seen at 30 kV
source voltage and tile indications are only vague at 45 kV.
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Table 23- Detection of Defects in Seeded Disks of Sintered

Alpha SiC by Microfocus X-ray

Disk

Thickness.

(inch)

Void Size

(.m)
50-125 125-250

0.I D D
0.125 D D
0.25 ND D
0.50 -- D

Carbon Inclusion B4C Inclusion
Size (.m) Size (urn)

50-125 125-250 50-125 125-250

D D PI D
D D ND D
-- D -- D
-- D -- D

D = Detected
ND = Not Detected
PI = Possible Indication

X-Ray Direction

L_, • ..t

_._ _- _. _

t
Fig.136 - Appearance of a i00 pm Void Detected by Microfocus X-ray
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5.3 - Ultrasonics

Two seeded disks were examined by an ultrasonics technique using a 50 MHz
beam. The results of a C-scan and some selected areas of an A-scan are shown
(Figures 137 and 138). The disks were examined two times each and excellent
reproducibility in defect imaging was seen. Many more defects were detected in
addition to the seeded defects. The defect location of the seeded defects was
the same as the expected location in some cases, and in some cases it was not.

A 2" x 2" x 0.37" plate of sintered alpha silicon carbide which was fabri-
cated with large voids (approximately 250 _m) was examined both by microfocus x-
ray and nigh frequency pulse-echo ultrasonics. At 55 kV and 0.5 ma, with a
focal spot to film distance of 28 inci}es and a 15-minute exposure, no x-ray
defect indications could be identified, however, when this plate was examined
with 36 i.iHz ultrasonics, several defect indications were observed as seen in
Figures 139 and 140.

The plate was scanned from both sides and for each side, two successive
scans _,ere made to ascertain reproducibility. Therefore, in the copy reproduc-
tion, two indications ma_ actually correspond to one single defect due to slight
differences in recorder pen repositioning. Ti_e two scans often overlappea.
Very 9ood correspondence was thus observed. In order to document the con-
sistency in the defect locations, some defects were marked with edges marked
with numbers for proper superimposition.

All the indications in the C-scans may not always be due to the existence
of defects. In fact, because of the nonparallel specimen surfaces of the as-
fired sample, the gate location was affected with respect to the front and back
surface. The non-equal distances at different points (ultrasound travel length)
of the front and back reflections causes the echo to move back and forth in the
time domain of the gate (A-scan) and can trigger the pen (exceeding the peak
threshold detection) on the X-Y plotter (C-scan). This can be observed as long
lines in Figures 139 and 140. It should be noted that the C-scan is larger than
the plate cross section by virtue of the magnification obtained by using the
plotter range calibration. Because the beam width was 2 mm and the pen in the
plotter dictates the size of dots in the C-scan, the general size of the flaw
indication should not be construed as being representative of the actual flaw
size.

The streaks observed in the C-scan depend very much on the attenuation
characteristics. For example, in one test bar which was examined (Figure 141), a
one-digit change in attentuation dramatically changed the number and the length
of the indications in the C-scan. Until plates are cut through indicated
defects and correlated, these defect indications should be interpreted
with caution.
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Fig. 139 - Ultrasonic C-Scan of Seeded Void Plate at 36 MHz.
The Scan Was Performed Twice and Good Consistency in

Defect Detection Was Seen

4

Fig. 140 - Ultrasonic C-Scan of Seeded Void Plate at 36 MHz

Corresponding to Figure 139 With Transducer on the Opposite Face
of the Plate
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Fig. 141- Effect of Attenuation Selection Characteristics on the C-Scan
Indications for Alpha Silicon Carbide Test Bar

5.4 - Scannin 9 Laser Acoustic Microscop_, (SLAM)

The SLAM work was performed by Sonoscan, Inc. on a separate subcontract•
Sonoscan examined the following silicon carbide articles:

I • Flexural Bars
(a) Reaction sintered
(b) Si ntered

II. Seeded Disks (Sintered Alpha)

Ill. Turbine Components
(a) Reaction bonded vanes
(b) Injection molded alpha SiC vanes
(c) Injection molded alpha SiC blades

5.4.1 - Reaction Bonded F1exural Bars

All samples were found to be compatible with the SLAM operating at
100 Mhz and high resolution images were obtained.

All samples contained a large linear flaw which is typically a milli-
meter wide and several millimeters in length, oriented parallel to the

bar's long axis. Tilis flaw was peculiar in that its visibility was sen-
sitive to the insonification direction.
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Acoustic background structure in the bars is substantially "cleaner"
than that found in the seeaeddisks, but similar to that of the RBSiC
vanes.

In the ten samples investigated, surface flaws, buried flaws and
microstructural variations were located and photodocumented.Flaw densit._
was 3 to 4 flaws her bar (data on a 1.0-inch long segmentcentered on the
bar).

An example of the documentation is shown in Figure 142.

The sketch presented indicates the location of flaws found in flexural
bar 175. Micrographs illustrating the typical structure, as well as two

zones containing flaws are presented in Figures 143and 144. In addition to
the documented features, several small surface pits were also observed.

Those that were most visible acoustically are presented in the sketch (the

dots)•

It should be noted that unless otherwise stated, the micrographs were
obtained at a sound frequency of i00 MHz. The field of view is 2.3 by
3.0 ram.

5.4.2 - Sintered Alpha SiC F1exural Bars

All samples were found to be cmnpatible with the SLAM operating 100
MHz and high resolution images were obtained.

No major microstructural changes or peculiar flaws (like that of RBSiC
bars) were found.

Acoustic background structure is substantially "cleaner" than that of
the seeded discs, but similar to that of the sintered blades and vanes.

In the ten samples investigated, surface flaws, arid buried flaws were

located and photodocumented. Average detected flaw density is 2 to 3 per

bar (data on an 1.0-inch long segment centered on the bar).

175

RB175-1 RB175-2

- -"

Approximate large
Area of region of

Disturbance porosity

j,/_ surfacepits

I, Peculiar 1

• / Linear

I ___ Flaw

Fig.142 - RBSiC Bar 175
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Fig. 143 - Acoustic Micrographs - Bar 175, Outside Region

Figure 143was taken in the region outside of the central area of the bar.
This zone contains considerable structure ana a scrambling of the interferogram
fringes. This may correspond to a region of unreacted material.
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Fig. 144 - Acoustic Micrographs - Bar 175, Central Region

Figure 144 shows a zone of transmission variation found in the central zone of
Bar 175. This zone contains little acoustic speckle and is interpreted as a
zone of increased porosity.
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All samples were examined at 100 MHz using both shear and
compressional waves. Flaw visibility was generally better using shear
waves. Micrographs sho_ing a typical structure and illustrating some of
the flaw types are presented (Figures 145and 146). Detailed flaw maps were
also docuraented with an example as shown in Figure 147.

Flaws were detected in all four of the 100 MHz compatible seeded

disks. In some cases the flaw location correlates with penciled marks on

the surface, in other cases they do not.

5.4.3 - Seeded Defect Disk Examination

Acoustic background structure and acoustic attenuation properties of
the disks differ substantially from the flexural bar samples. Typically

the disks exhibit more background structure and increased attenuation.

A carbon coating on the disc samples were found to increase acoustic

attenuation and produce a very "busy" acoustic background which complicates
the detection of small flaws. Removal of carbon improves the technique.

Utilization of these samples as calibration sample requires:

- Further documentation and confirmation of type, size, and location of

implanted flaws.

- Understanding of the origin of the flaws which are detected but not

implanted.

- Delineation of the differences in material properties between the disks ar

the bars.

The flaw location information was provided to Carborundum in the

manner described in Table 24.

5.4.4 - Reaction Bonded Silicon Carbide Vanes

Vanes can be imaged and micrographs obtained using standard in-

sonification stages at 100 MHz.

Routine testing of the vanes will require fixturing in order to make

the test systematic and improve testing speed.

Tile quality of SLAM images obtained on the vanes is comparable to that
obtained on the flat bars.
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Fig. 145 - Acoustic Micrographs Showing Two Low Contrast Flaws

in Bar 39-1

185



Fig. 146 - Acoustic Micrographs Showing Large High Contrast Flaw Found
in Sample 39-1
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DESCRIPTIONS

(I) LOw Contrast Clrcular _ 1200_ below marked surface

FL. -.....

(2) Very Low Contrast, Circular _ S_ below surface

(3)(4)(5) Group of Non Distinct Low Contrast Features

(S)_ Ring Pattern

(6) Group of Low Contrast Circular Features

C
(7) Large, Low Contrast, Dark Edges, Bright Center (very deeply embedded)

(8) Extremely LOw Contrast

Large Circular Low Contrast
Clrcular= Imm deep

Lying Deep (i'_

Below the Surface

Fig. 147 - Example of Documented Detailed Flaw Maps

Figure
SD-1

SD-2

SD-3

SD-5

SD-6

SD-7

SD-8

SD-IO

SD-11

Table 24- Flaw Location -- Seeded Disks

Sample Comments
V2-3 See diagram accompanying micrograph (in the

original report).

V2-3 See diagram accompanying microg_ph (in the
original report).

V2-3 See diagram accompanying micrograph (Figure

V5-3 (a) Marked on sample in green

(b) Marked in orange

V7-2 Circled in green on sample

C3-2 Circled in green on sample
C3-2 Circled in orange on sample.

B6-2 2 similar areas r_rked on sample with green
dots.

B8-2 Marked on sample with green dot.

20).
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Background structure, flaw characteristics, and microstructural
variations imaged in the vanes are similar to those found in flat bars.
Thus, the results on bars are directly applicable to the vanes.

Vanes are more susceptible to microstructural variations attributed to

pockets of unreacted material (relative to the RBSC bars).

An example of a defect appearance for Vane 184 is shown in Figure 148.

5.4.5 - Injection Mo|ded Vanes and Blades

Vanes and portlons of the blades carl be imaged and micrographs
obtained usiny standard insonification stages at i00 FIHz.

Routine testing of the vanes and blades wil| require fixturing in

order to make the test systematic, improve test speed, and eliminate sound
reverberation artifacts.

SLAM images of the vanes and blades are of a quality comparable to
those obtained on bars.

Background structure, and flaw characteristics of the vanes and tur-
bines is similar to that of the bars. Thus, results obtained on the bars

are directly applicable to components.

Surface flaws, bumps and pits were detected but do not appear to
interfere with visibility of buried structures.

Methods - Five injection molded vanes were examined using the standard
I00 MHz soundcells and no special fixturing was required. Without
fixturing, it was possible to cover 90 percent of the total blade volume.
In some cases and in some areas of the vanes, the rnicrographs show a
number of imaging artifacts resulting from sound reverberation. These
artifacts which depend on both the vane geometry and insonification angle
are easily distinguished from buried flaws because the SLAM has real-time
imaging capabilities. However, artifacts may confuse the reader on the
static micrograpns and are noted in the figure captions. With appropriate
fixturing and sample insonification, the reverberate artifacts can be eli-
minated from tile images.

The flaw locations were identified on the specimens and returned to
Carborundum (Table 26). Some typical defect appearances in SL#_I are shown
in Figures 148 through 152.
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Fig. 148 - Acoustic Micrographs - Vane 184

The above figures are AM and I modes of structures found in another zone in

the airfoil of 184. This dark ring pattern is 1.5 mm across (field of view is
3 mm horizontally). Several strL,ctures like this one were found and the areas

of the vanes were circled in pencil.
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Fig. 149 - Acoustic Micrograph - SampleV2-3

Figure149 was taken on SampleV2-3. This mnplitude micrograhh showstwo flaws
found with the raster over the circled dot mark of the sample (circled).

Table 25- Flaw Locations

Figure Samp|e
RBV-1 DDAVane 186
RBV-2 DDAVane 184
-- DDAVane 183
-- DDAVane 183
-- DDAVane 175
1F;B-5 DDA_lade 24
1MB-4 DDABlade 16
1MB-2 DDABlade 17
1MB-3 DDABlade 445
1V-V-1 Vane142
1MV-3 Vane321

RS91-1 Alpha SiC 39-1
RS91-2 Alpha SiC 39-1
RS95-9 Alpha SiC RS95-9

SampleMarked
Circle on airfoil
Circle
Surface bumpscircled
2 circles airfoil
X marked on airfoil
Large crack in root visible
Not Marked (inclusion in root)
Circ]ed tip of airfoil
Large crack in root
Square area on airfoil
Square area on airfoil and

leading edge
Flaw 6 in drawing
Flaw 7 in drawing
In group of surface flaws near

upper edge
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Fig. 150 - Acoustic Micrograph - Vane 142

Figure150 shoves an amplitude n_icrograph from the airfoil region of Vane 142.

The micrograph shows an isolated pore (circled) and its location was marked on

the sample. Similar teatures were found throughout the vane. (The vertical
lines are sound reverberation artifacts).
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Fig. 151 - Acoustic Micrographs - Blade 17

Figure 151 shows two circular structures found near the tip of the airfoil iF
Blade 17. Similar structures were found in Blade 94.
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(a)

(b)

Fig. 152 - Acoustic Micrographs - Vane 321

Figure (a) was taken in an area of the airfoil of Vane 321 with many surface
pits (circled), while (b) was taken near the leading edge. Several large, iso-
lated pores lead to the ring patterns observed in this micrograph.
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5.5 - Scannin 9 Photoacoustic Spectroscopy (SPAM)

The scanning photoacoustic spectroscopy (SP_) of silicon carbide materials
was performed at the Physics Departraent of Wayne State University under the
direction of Prof. k. L. Thomas.

The aipha silicon carbide specimens were polished and Knoop indentations
were made ranging from I kg to 3.5 kg loads (90 to 170 _m flaw radius).

5.5.1 - Preparation for SPAM

The SiC ceramic disks (both No. 13 and 8) v_ere sectioned into pieces
that would be accon_nodated by the PAS-cell (see Figure153). (The same
PAS-cell and microphone were used for both the study of the unpolisr, ed and
the polished SiC surfaces.) Each Knoop flaw was positioned with respect to
the edges of its respective sectioned piece and examined opticallyto
determine length, _idth at mid-point, relative depth at mid-point, and also
occurrence of visible surface cracks extending beyond the length of the
Knoop flaw (see Table 26). Optical photographs were made of each Knoop flaw
and the surrounding sample surface structure. There was 9ood correspon-
dence between Knoop load and length, relative depth, and freguency of sur-
face cracking; correspondence between load and width was not good and in
several cases difficult to determine due to side chips occurring at or near
the indentation mid-point, particularly for Knoop loads exceeding 2.0 kg.

5.5.2 - SPAM Processing and Data Anal)sis

Figure153describes a block diagram of the system and the PAS cell
used to study the polished SiC samples. An Argon beam was chopped at I KHz,
then focused onto the sample with a beam spot size of approximately 10 _m.
The sample was mounted on a mechanical stage which allowed the beam to scan
the sample surface in both the x and y directions to produce area scan
traces on an x-y plotter. Traces were made of each sample covering a
2.54 mm x 2.54 mm area surrounding the Knoop flaw. The Knoop flaws were
located using the sectioned sample edges measured with respect to the mid-
point of the Knoop flaw, and also observing the speckle and diffraction
patterns produced by the flaws. Repeatibility in locating the Knoop flaws
in this manner was excel lent.

All traces were made on the same scale for comparison. In addition,
the same time constant was used (30 ms) for each sample with the exception
of No. 7 where a I00 ms time constant was used due to a higher noise level.
The Signal-to-Noise was good for all samples, the background signal from
the samples being bet_een 150 _v - 170 _v for all samples at a laser

194



LASER

DIGITAL SCANNING, DATA ACQUISITION AND DISPLAY

Optical Window

Chopper Lens

Air

Sample

Microphone

MECHANICAL

SCANNING STAGE

Ref.

DIGITAL

RECORDER LOCK IN t I
AMP. - PREAMP. I

I

Fig. 153- Block Diagram of tile Apparatus

Table 26 - Knoop Flaws

Knoop PAS- PAS- Surface

Flaw Load Length Length Width Width Cracks

Number (kg) (_m) (pm) (_m) (.m) Number
1 1.0 79 143 9 160 0
4 1.5 97 170 9 130 1

7 2.0 110 160 12 190 2

16 3.5 167 310 16 280 2

17 3.5 160 260 17 140 2

18 3.5 154 270 16 140 3
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current of 14.5A. The power incident on the sample was measured to be
approximately 45 mW. The noise level for all samples was approximately_+ i
_v. Repeatibility of the traces was excellent for all samples with the
exception of No. 7 where the noise level was higher.

Figure 154shows a photo of a i kg load Knoop indentation along with
the corresponding PAS signal traces, lhe blocked area drawn on the signal
traces shows the boundaries of the photograph (marked A, B). The Knoop
flaw and its signal are marked K, and a large surface structure below tile
flaw and its signal are marked S. Note that the signal due to the Knoop
flaw is larger than the signal due to the surface structure. This was also
the case for flaw No. 18 (see Figure155). The small inset at the left of
the photo is a reduced area scan with less expansion in the y-direction to
give a more 3-dimensional view of the flaw. Note: there were no surface
cracks for any of the 1.0 kg load Knoop indentations. Knoop flaw No. 18
(Figure155) had the most extensive mnount of surface chipping and tile most
number of cracks. The large chips extending, from the side of the flaw
were deeper than the flaw itself. The photo shows the Knoop flaw (k) with
a large surface structure(s) below it. Note the corresponding photo-
acoustic signal for the surface structure is much smaller than the signal
for the Knoop flaw.

Figure 156 shows Knoop flaw No. 7 with a 2.0 kg load. Tile noise level
was highest for this sample (+ i _v) and the photoacoustic background
signal was not as reproducible for this sample as fGr the others. The
signal due to the Knoop flaw _;as very reproducible, however.

Figure 157 shows traces and a photograph made from the unpolished back
surface of one of the SiC sample pieces where there is no Knoop flaw but
the surface structure was similar to the previous unpolished Knoop indented
surfaces. Note that the surface structure gives rise to a more structured
photoacoustic signal.

5.6 - Summary of hDE Task Accomplished

The applicability of microfocus x-ray, high frequency ultrasonics, SLAM,

and SPAM technology to detecting defects in silicon carbide materials has been
evaluated. Further work is needed in areas of:

(a) Flaw characterization (type, size, shape, and location).

(b) Destructive evaluation -- NDE signal coupling.

(c) Evaluation of different methods to detect and characterize the same flaw.

(d) Acoustic Bnission studies.
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PAS signal traces corresponding to the photo at the right. Each

increment in the y-direction is 13ram.

I_ • "--_s ¸

Signal length - 143#._n.

Signal width == 160_n.

Length = 78_.

Width = 9 _.

Load = 1.0 kg.

Relative depth - 2

Cracks: none

Fig. 154- Polished SiC Knoop Flaw No. 1

k

PAS signal traces corresponding to the photo at right. Each increment in the y-direction is 13ram

, I
°l. *.. • • • .

" _ p, . .
[,',._[i" ,".'"" . " -" "
_ ._° ° ° _,, ° "" . .

-----.---- .. - - _ _._ | ,..'_ . ..., .' .
t • • , . =,

:"-_=--'-" "-- ------ ___ I" '" "F-..,,-.:._..,.,...>,,";..- ..-..._._._.r._. -._:_ 'i".
""-----. L_.."',___ .

^

_'--_ ._..L-

: - ,= =,

Signal length --" 270 _.

-_-__-_-..-- _

t I =

• o.

J ,'°

°_" °.

- ,.. ,_.. • °

Length "- 154 _'n.

Width "- 12 ,_n.

Load --" 3.5 kg.

y

,=.

Relative depth "-- 4,2•

Cracks: (3)

Signal width -" 240 ,_.m.

Fig. 155- Polished SiC Knoop Flaw No. 18
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PAS signal traces corresponding to the photo at right• Each increment in the y-direction is 13rnm.

yyZ ..

D

D

Signal length _ 160 _n. Load -' 2,0 kg.

Signal w_clth -' 190_n.

Fig. 156- Polished SiC Knoop Flaw I_o.7

Relative depth '- 3

Cracks: (2)

4_
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Unpolished SiC Surface

(no Knoop flaw).

| •

Fig. 157- Unpolished SiC Surface (No Knoop Flaw)



6 - MECHANICAL PROPERTIES

6.1 - Baseline Properties Determination

The baseline properties data of both sintered alpha silicon carbide and
fine grain reaction sintered SiC manufactured by different processes are sum-
marized in Figure158 and Table 27.

The specimen cross section was 1/8" x 1/4" and a total of 30 specimens were
tested per each baseline datum. Tests were done in the 4-point bend mode using
a O.75-inch inner span and a 1.5-inch outer span.

The strength data obtained for injection molded specimens were obtained for
an as-fired surface. The cold pressed, isopressed, and slip cast specimens o$
alpha SiC as well as compression molded and thixocast RBSiC specimens were
machined. The test bars were annealed for 2 hours in an inert atmosphere (at
1500°C for alpha SiC and at 1200°C for RBSiC) prior to flexure test.

Strength levels reported here for both cold pressed alpha SiC and fine
grain reaction sintered SiC are lov;er than previously observed. In earlier
investigations, strength levels corresponaing to the shaded area have been
reported for cold pressed sintered alpha SiC and for fine grain reaction sin-
tered SiC. For fine grained reaction sintered SiC, the shaded high temperature
area corresponds to test done at 1300°C (2372°F). The _Jeibull modulus was 10.9
at this temperature and 9.6 at room temperature. The lower strengths observed
in the present investigation havE; been traced back to improper furnacing during
specimen preparation.

The baseline data were analyzed by various statistical treatments in order
to extrapolate tensile strength data from bend results.

Because of the fact that an optimum sampling may not still be established
even though 30 specimens were tested per each condition, a construction of con-
fidence bands for the Weibull least-square regression estimate is useful for
design purposes and in reliability analysis. Therefore, 90% confidence bands
have been constructed for the different Weibull plots.

6.1.1 - Failure Analysis of Test Bars

Failure analysis, via SEN, was conducted on broken test bars of sin-
tered alpha silicon carbide manufactured by both injection molding and slip
casting. The majority of failure-causing flaws were processing-related
3-dimensional voids lying at or close to tensile surface. (See Tables 28
to 30.)
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(a) Sintered Alpha Silicon Carbide
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(b) Fine Grain Reaction Sintered Silicon Carbide

Fig. 158 - High Temperature Strength Retention
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Table 28 - Defect Types and Distributions in Flexural

Strength Specimens

Injection Molded SASC - Tested at 25°C

Type Number Percent
Surface Flaws* 17 57
Internal Flaws 7 23

Corner Flaws** 4 13
Others***

Total 30 I00

Table 29 - Distribution of Failure Origins

Injection Molded SASC - Tested at 1200°C

Type Number Percent
Surface* 23 77

Internal 4 13
Corner 2 7

Others*** 1 3

Total 30 I_0

Table 30 - Distribution of Failure Origins

Slip Cast SASC - Tested at 25°C

Type Number Percent
Surface* 21 70

Internal 6 20

Corner** 2 7

Others*** 1 3

Total 30 100

* Includes subsurface voids located within 100 _m from the tensile surface.

** Includes chamfer damage
*** No apparent fracture origin noticed
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Some of the typical microstructures and the failure origins for sin-
tered alpha silicon carbide and reaction sintered silicon carbide are given
in Appendix IV.

The strength distribution of the thixocast reaction bonded silicon
carbide at 1200°C (2192°F) is interesting. A limited failure analysis
investigation failed to reveal any clues with respect to fracture originat-
ing flaws.

It is possible that because of the very low room temperature fracture
toughness of this material, machining without introducing subsurface damage
is difficult. At 1200°C, however, oxidation crack blunting is a possibi-
lity which would increase the strength and minimize the distribution in
strength. _ecause of the high potential of this material for c_plex shape
fabrication, the elevated temperature strength distribution is an aspect
which merits further consideration.

6.2 - Fracture Mechanics

In room temperature KIc determination, the single-edge notched-beam method
gave Klc - 5.0 to 5.5 FiPa_-_ for specimens machined from a plate of cold pressed
sintered alpha SiC. The chevron notched beam yielded a Klc = 3.4 to 4.3 MPAI r_-_
when the height of the triangular cross section was approximately 75 percent of
specimen depth. A value for Klc = 3.0 MPa_was obtained by D. Munz (then at
DFVLR) on similar specimens. In another inherently high strength specimen
population, the SENB method yielded a value of Klc = 5.5 to 5.8 MPa_, _Wnere as
chevron notched specimens (from the same population) in _lich the height of the
triangular cross section was equal to the specimen depth yielded a value of
Klc 6.0 to 9.0 MPa _.

The initial efforts indicate that further development and optimization of
notch configuration are needed for application of chevron beam method to alpha
SiC.

No detailed fracture mechanics tests could be conducted due to the early
termination of the contract.

6.3 - HiBh Temperature Structural Mmdification

6.3.1 - Oxidation Effects

Oxidation studies were conducted with fine grain reaction sinterea

silicon carbide. Flexural bars of 2.0" long and 0.125" x 0.25" cross
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section were exposed to 1260°C (2300°F) and 1371°C (2500°F) in a tube fur-
nace with a flowing stream of air for up to 500 hours, koom temperature
flexural strengths were determined in 4-point bend and the results are
shown in Figure 159.

The room temperature strength of the control population is lower than
the baseline data reported in Section 6.1. This discrepancy is due to the
machining parameters for this particular batch of specimens. Improper
machining can introduce considerable subsurface microcracks which result in
lower room temperature strength, in general. Oxidation at 1260°C, essen-
tially blunts the severity of these cracks, thereby increasing the
strength.

Bars prepared from the same lot of material but machined under optimum
conditions gave an average room temperature strength of 64,000 psi. The
question whether an inherently high strength population of reaction sin-
tered silicon carbide can be improved with respect to strength by selective
oxidation treatment remains unanswered. The results do indicate that the
room temperature flexural strength of inherently low strength fine grain
reaction sintered silicon carbide can be increased by up to 63 percent by
selective oxidation treatments. The oxide scale of 1260°C-oxidized speci-
mens was investigated by optical microscopy. The appearance is complex
with seemingly different oxidation products in the free silicon and SiC
regions. Some pitting was observed in the 5(JO-hour oxidized specimens
which would explain the low strength.

The observed decrease in strength due to 1371°C (2500°F) oxidation can
be explained when the oxidation v_eight change data, shown in Figure 160is
examined. The weight loss (due to pitting, and, perhaps, vaporization of
the free silicon) at 1371°C becomes very rapid after approximately i00
hours.

The oxidation studies were not conducted with sintered alpha silicon
carbide due to the =ermination of the contract.

6.3.2 - Stress Rupture Effects

An established method to elucidate time-dependent slow crack

growth effects in ceramics is the static fatigue or the long-term

creep stress rupture experiments. A variation of this common method
is the stepped up stress rupture tests in which either the temperature

is incrementally increased at a given applied stress at regular

intervals or the applied stress is incrementally increased at constant
temperature and the survivability of the specimen under these test

conditions is examined. Although no quantitative failure predictions

can be extracted from the latter experiment, it may be useful in

identifying temperature regions in which a material may exhibit poor
loadbearing ability owing to microstructural modifications.
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6.3.2.1 - Stepped-Up Stress Rupture Tests

Tests were conducted from 800°C to 1500°C at 100°C intervals at
different loads corresponding to applied stress levels of 40,000 psi
to 50,000 psi on a population of cold pressed sintered alpha SiC which
had a room temperature baseline strength of 65.9 + 11.7 ksi. The sta-
tic loading lasted for 24 hours at each temperatuTe.

The results are shown in Table 31 and Figure 161. Early, 800°C
failures were observed for two specimens, one loaded to 40,000 psi and

the 8ther to 55,000 psi. However, one specimen survived the cycle to
1500 C at which temperature failure occurred in approximately 2.5
hour_. At Oa = 50 ksi, two failures occurred at 1300_C, and one at
IIO0_C.

Failure analysis was conducted on these specimens, aided by a
scanning electron microscope. The specimens that broke after exposure
to temperatures above 1300°C (namely, 4-11, 5-3, and 4-6) showed some
fuzzy intergranular fracture region perhaps indicative of slow crack
growth (via grain boundary sliding, for example) occurring at these
temperatures (Figure 162). The nature of the failure origins for oti_er
specimens were not significantly different from those normally observed
for alpha SiC broken at rooLn temperature, indicating that no critical
flaw modification occurs below the temperatures _ere slow crack growth
became predominant.

6.3.2.2 - Stress Rupture Tests

Static creep stress rupture tests were conducted with compression
molded fine grain reaction sintered silicon carbide in air at 1832°F
and 2192°F in 4-point bend. In lOG hours of testing, failure occurred
at and above 55,000 psi of applied stress at 2192°F. No failure
occurred for stresses up to 56,000 psi at 1832°F (Figure163). Creep
deflections were seen durinq the stress rupture test, especially at
2192°F (Table 32 and Figure164). Based on the static fatigue data,
the slow crack growth deformation aspect for these materials seems to
be insignificant at these temperatures and very high applied stress
levels.

The specimens which failed during the test were examined for
possible slow crack growth regions on the fracture surface.

Figure 165 shows the microstructure and the fracture surface
appearance of a specimen tested at 1200°C. Failure occurred in 17.45
hours at an applied stress of 55,000 psi. This stress level is within
the standard deviation of the baseline population at this temperature.

The fracture surface appearance is unusual in that there are several

regions or pockets which show pull out and poor packing. No specific
slow crack growth region is discernable. The fracture surface
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Table 31 - Failure Anal)sis of Bars Tested

By Stepped-Up Rupture Test

No. Stress, _f, 103 psi

2-1 55.0

8-5 55.0

5-7 55.0

1-6 55.0

4-11 50.0

5-3 50.0

4-6 40.0

Comments

Chamfer damage; failure occurred at 800°C
after 0.8 h.

Surface-connected semi-elliptical void with
surrounding porous region; a = 30 _m; c =
120 _m. Failure occurred at 800°C after
4.1h.

Surface-connected semi-elliptical processing
void; surrounding porous region, a = 26 urn;
c = 120 _in. Failure occurred at 900°C after
7.35 h.

No obvious fracture origin. The specimen
failed at 1100°C in 22.8 h.

Semi-elliptical surface void. a = 60 um;
c = 90 _m. Failed at 13G0°C after 17.7 h.

Chamfer damage. Failed at 1300°C after 23.6 h.

Semi-circular poorly-bonded region. Failed at
1500°C after 2.1 h.

Table 32 - Permanent Deflections in Fine Grain Reaction

Sintered SiC in Stress Rupture Expts.

Applied Stress, (aa, ksi) Time (hours) Deflection (inches)

40
45
5O
51
55
56

113
114
113
160
113
100

0.0155
0.0259
0.0235
0.0163

O.O059*(anomaly)
0.0135
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appearance of another specimen (Figure166) is very different. Here
again, no obvious slow crack growth region exists although the frac-
ture surface contains contaminants. This specimen failed in 36
minutes at an applied stress of 57,000 psi.

The stress rupture (static fatigue) experiments were conducted on
dry pressed sintered alpha silicon carbide at 1500°C (2732°F) in
flexural bend. The results are shown in Figure167. The two survived

specimens showed some creep deflection--approximately 3800 micro
inches for an applied stress of 35,000 psi and approximately 4000
micro inches for an applied stress of 40,000 psi.

A SEM failure analysis was conducted on failed specimens. Two
examples of fracture surface appearance are shown in Figure168. In
both instances, processing-related crack-like voids caused fracture.
Although 40-60 hours expires in the test, no oxidation-related slow
crack growth region around the main flaw can be seen.

These results have indicated the difficulties which are encoun-
tered in applying the traditionally known life predictions established
via stress rupture tests in ceramics to the failure of SiC ceramics.
A more fundamental understanding with respect to mechanisms causing
the stress rupture of silicon carbide materials needs to be
established before undertaking life predictive data reduction.

6.3.3 - Creep Experiments

High temperature creep tests were conducted with silicon carbides
under this contract. The deflection of beams (0.125" x 0.25" cross
section) in 4-point bend was measured as a function of time by using a
3-point probe and a LVDT set-up. The creep strain is then calculated from
the beam formula:

= 16 dL-_2, where

d = specimen depth,

y = deflection, and
L : outer span length.

E : creep strain

A quadratic curve fit is made between the product of strain and time
versus time:

et = A + Bt + Ct 2 . Or

A
a=B+Ct+-

t t -- time

A, B, C = equation constants
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Then the first differential gives the strain rate,

A
_=C--- .

t2

The _ decreases with time during primary creep regime and stays fairly

constant during the steady state regime. In computer calculations, the
onset of steady state creep is defined to be when the second differential,

= 0.001 (that is 0.1 percent change in strain rate). In the above
equation, the minimum creep rate is equal to C (that is, _ at t = _).

For compression molded reaction bonded SiC, _teady state creep
was observed to begin between 30 and 40 h at 1200 C at applied outer

fiber stress levels of 30, 45, and 5_ ksi. Minimum strainArates at

these stress levels were 0.741 x 10-v in/in-h, 3.311 x 10-_ in/in-h,
and 3.432 x 10-v in/in-h respectively.

The creep curves are shown in Figure169and the strain rate dependence

with time at Oa = 50 ksi in Figure 170. The dependence of steady-state
creep rate on applied stress is plotted in Figure 171 and the line has a
slope of approximately 3. The stress exponent, n, value of 3.0 usually

represents lattice mechanisms which occur independently of the presence of
grain boundaries such as dislocation glide and climb. These results should
be considered strictly preliminary, and an additional datum point or two
between 30 and 40 ksi is highly desirable.

The bulk density was measured before and after the creep experiment

and the results are given in Table 33:

Table 33 - Density Changes After Creep of RBSiC at 1200°C

Density, g/cc
Applied Stress, Time,

Oa, ksi hours Initial After Creep

ap X 100
p

45 97 2.962 2.921 -1.4

30 114 2.966 2.958 -0.3
30 75 2.990 2.935 -1.8

50 89 2.970 2.928 -1.4

The consistent decrease in densities indicates,.perhaps, cavitation

during creep.
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Creep tests were also conducted for reaction bonded SiC at 1000°C and

cold pressed sintered alpha SiC at 1500°C. The results are as given below:

Compression Molded Reaction Sintered SiC at 10000C

_a : 35 ksi
Oa = 45 ksi

E = 1.967 x 10-6in/in-h

= 1.918 x 10-6in/in-h

Essentially no change in the creep rate is observed even though the
applied stresses were different. A re-run of the experiment is suggested.

Cold Pressed Sintered AIpha SiC at 1500°C

oa = 30 ksi
_a = 40 ksi

E = 2.523 x 10-6in/in-h AP/Pinitia l
= 5.170 x 10-6in/in-h Ap/Pinitia I

= -0.5%
= -0.1%
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6.4 - S=nmar_ of Mechanical Properties Investigations

1. Baseline statistical strength distributions were established for fine grain
reaction sintered silicon carbide and alpha silicon carbides manufactured

by different processes.

. The silicon carbides exhibit excellent hot strength retention charac-

teristics at 2192°F.

e The thixocast reaction sintered silicon carbide exhibits unique high
reliability characteristics (very high Weibull modulus) at 2192°F.

.

.

e

Extensive failure analysis investigations have established that the
strength-limiting critical defects for sintered alpha silicon carbide are
processing related voids and SiC agglomerates.

Limited slow crack gro_ch experiments have indicated that this aspect has a
minimal effect on the long term mechanical strength of the silicon carbides
at high stresses and temperatures. The failures which occur in limited
times cannot be explained by conventional slow crack growth concepts;
however, statistical flaw and stress distribution analysis may partly
explain the observed behavior. Life time predictions for these materials
in service must be made with extreme caution after establishing high

temperature fracture mechanisms.

Limited creep tests were also performed for" the two silicon carbides in
flexure. The alpha silicon carbide possesses excellent creep resistance
even at 1500°C.

. Oxidation, at 1260°C (23000F), for reaction sintered SiC increases the
room temperature strength for oxidation periods up to 200 hours.
Considerable pitting reduces the strength, however, when the same material
is oxidized at 1371°C (2500°F).

e because of the early termination of the contract, a more cmnplete
understanding of the mechanical effects could not be established for the
silicon carbides in the areas of:

(a) Strength distribution as a function of temperature,
(b) Dynamic fatigue slow crack growth effects,
(c) Kinetics and mechanisms of creep,
(d) Oxidation of alpha silicon carbide,
(e) Effects of elevated temperature proof tests,
(f) Fracture mechanics,
(g) Thermal shock,
(h) Effect of oxidation on subsequent long term slow crack growth aspects,

and

(i) Failure prediction Jnethodology.
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It is recognized that some of the above aspects are extremely important
from a practical consideration of the ceramic automotive gas turbine engine.
Therefore, it is highly recommended that more important aspects of the above
list be studied in greater detail when more favorable economic conditions
prevail.
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7 - PHYSICAL PROPERTIES

During the contract tenure, only the thermal diffusivity and the specific
heat were measured as a function of temperature for the two silicon carbides.

7.1 - Thermal Diffusivit_

Thermal diffusivity measurements were made by using the laser flash method
for both sintered alpha SiC (Figure172(a)) and reaction bonded SiC (Figure
17LKb)) at Virginia Polytechnic Institute.
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7.2 - Specific Heat

The specific heat measurements were made through Prof. d. Brown of the

Virginia Polytechnic Institute, Blacksburg. The results are shown in Figures

173 and 174.
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